

Ref: PJL/ENV/2021/360

Date: 01.06.2021

To, The Regional Director, Ministry of Environment, Forest & Climate Change Paryavaran Bhawan, Ravishankar Nagar, Bhopal (M.P.)

Sub: Six Monthly EC Compliance Report of Prism Cement Unit II & Int. Limestone Mines Ref: Environmental Clearance letter no. F. No.-J- 11011/949/2007/IA-II (I) dated 22.09.2008.

Dear Sir,

With reference to above mentioned subject and notification issued by MoEF & CC S.O. no. 5845 (E) dated 26.11.2018, we are submitting herewith the soft copy of half yearly report (October 2020-March 2021) related to compliance of accorded environmental clearance of Prism Cement Unit II & Integrated Limestone Mines (772.067 ha, 512.317 ha, 117.594 ha

Thanking you,

Yours faithfully, For PRISM JOHNSON LIMITED

Manoj Kumar Kashyap Sr. General Manager

Encl: As above

CC: The Director, MOEF & CC, Delhi The Member Secretary- MPPCB, Bhopal The Member Secretary- CPCB, Bhopal The Regional Director- CGWB, Bhopal The Regional Officer- MPPCB, Satna

PRISMJOHNSON LIMITED

(Cement Division - Unit II)

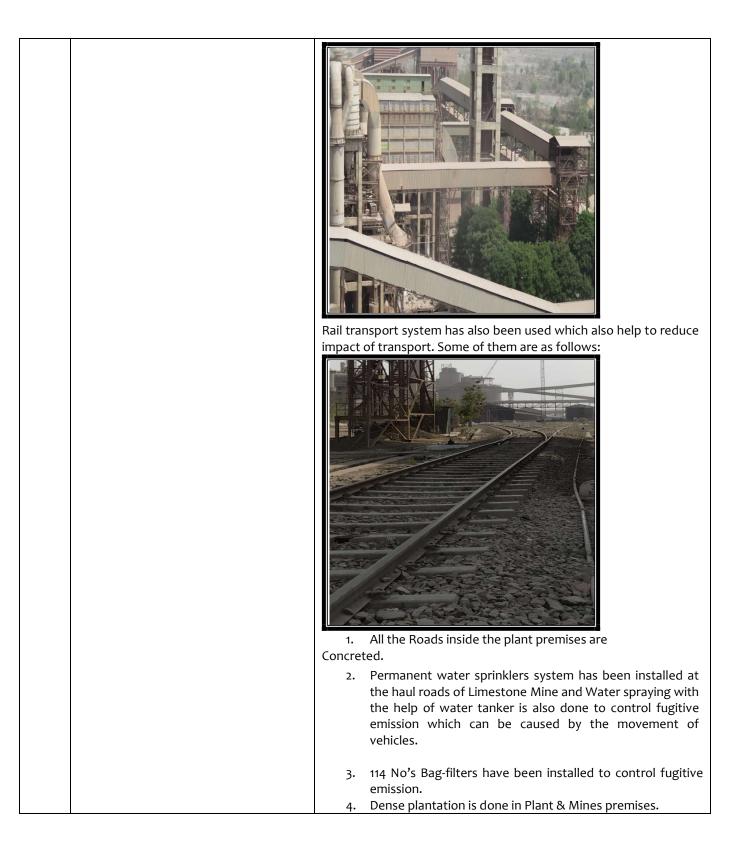
Works: Village Mankahari, P.O.-Bathia, Dist. Satna - 485 111 (M.P.) India T: +91-07672-275301 / 302600 Corres. Add.: 'Rajdeep', Rewa Road, Satna - 485 001 (M.P.) India. T: +91-07672-402726 Registered Office: Prism Johnson Limited, 305, Laxmi Niwas Apartments, Ameerpet. Hyderabad - 500 016, India. w: www.prismjohnson.in, www.cement.prismjohnson.in, E: info@prismjohnson.in

For

INTEGRATED CEMENT PROJECT

Cement Plant – II & Mines (Hinouti & Sijahata-I-772 Ha. Hinouti & Sijahata-II-99 Ha., Mendhi – 117 Ha. & Bagahai – 512 Ha.)

(Period : October, 2020 - March, 2021)



M/s Prism Johnson Limited. (Formerly Prism Cement Limited) Village—Mankahari, P.O.-Bhatila Distt., - Satna (M.P.)

Compliance report with Regard to Environment Clearance accorded by MoEF&CC vide letter no.J-11011/949/2007-IA-II(I) dated22.09.2008

S.No.	Conditions	Com	plianceS	tatus		
A. Spe	cific Conditions:					
1.	The gaseous and particulate matter emissions from various units shall conform to the standards prescribed by the Madhya Pradesh Pollution Control Board. At no time, particulate emissions from the cement plant including kiln, coal mill, and cement mill, cooler and captivepower plant(CPP) shall not exceed 50 mg/Nm3.	units with The	i.e. Kilr in the pr	and the particulate mat a, Coal Mill, Clinker Coole escribed norms. There is r report of emissions from	r and Cement Mill to CPP at our cemer	are well it plant.
	Continuous on-line monitorsfor particulate emissionsshall beinstalled. Interlocking facility shall be provided in the pollution control equipment so that in the event of the pollution control equipment not working, the respective unit(s) is shut down automatically.	qual parti varic displ displ Phot Ann Inter	ity monit iculate e bus unit: layed at lay boarc cographs exure 2. flocking	of AAQMS, CEMS & di facility has been provid	ission monitoring sy emissions monitor and the monitored nises by the means splay board is end ed in the pollution	ystem for ing from I data is of digital closed as
				o that in the event of the he respective unit(s) will h	•	
2	Secondary fugitive emissions shall be controlled within the prescribed limits and regularly monitored Guidelines/Code of Practice issued by the CPCB in this regard should be followed The company shall install adequate dust collection and extraction system to control fugitive dust emissions at material transfer points. Atomized water spray system with reclaimer shall be installed in silo used for the storage of ash.Covered conveyer	Sec we Atc sou Gui bei	condary Il within pmized sp urce of du delines/C ng follow tails of p ows:- Covered	fugitive emissions are co the prescribed limits by th prinklers and water sprayi ust generation. Code of Practice issued by	ntrolled and are m e means of various ing arrangement pr the CPCB in this re trol fugitive emission rovided for storage	aintained practices. ovided at egard are on are as
	belts shall be used to reduce fugitive emissions.		S.No	Name of raw material	Storage	
	Concreting of all the roads, water		1.	Limestone	Facility Covered Shed	
	sprinkling system at limestone and coal		2.	Coal	Covered Shed	
	handling area shall be ensured to reduce fugitive emissions		3.	Gypsum	Covered Shed	
			4.	Laterite	Covered Shed	
			5.	Clinker	Silo	
			6.	Fly ash	Silo	
			7.	Cement	Silo	

		 provided at the unloading of limestone at crusher. Fog Canon installed Near Stock Pile of Lime stone to control fugitive Emission. Bag filters (114 No. of Bag filters) are installed to control fugitive emission. Dry fly ash is pneumatically unloaded and stored in silo from closed bulkers. Permanent water sprinklers system has been installed at the haul roads of Limestone Mine and Water spraying with the help of water tankeris also done to control fugitive emission which can be caused by the movement of vehicles. Closed conveyor belts are provided for transfer of raw materials within the plant premises. Closed bulkers are used for transfer of fly ash to avoid fugitive emission. Covered trucks are used for transfer of other raw materials and end products. Wet drilling is practiced to prevent secondary fugitive emission. Dense plantation is done along the periphery of roads and in plant and mines premises as measure to control fugitive emission. Concrete road and truck parking area is provided to mitigate secondary fugitive emission. Photographs of various measures to control fugitive emission is enclosed as Annexure 3.
3	Ambient air quality including ambient noise levels shall not exceed the standards stipulated under EPA or by the State authorities.	Ambient Air emission parameters are well within the prescribed norms. Noise levels are also within the norms. Monitoring report of ambient air quality analysis and noise monitoring is enclosed as Annexure 4
	Monitoring of ambient air quality and shall be carried-out regularly in consultation with MPPCB and data for air emissions shall be submitted to the CPCB and MPPCB regularly. The instruments used for ambient air quality monitoring shall be calibrated time to time.	Regular ambient air quality monitoring and noise level monitoring are done with the calibrated instruments. Ambient air quality and Ambient Noise levels does not exceed the standards stipulated under EPA or by the state authorities. Calibration certificates are attached at - Annexure no. 4(b)
4	Efforts shall be made to reduce impact of the transport of the raw materials and end products on the surrounding environment including agricultural land.	Raw materials and end products are being transported in trucks covered by the tarpaulin and bulkers to reduce the effects of fugitive emission on the surrounding environment and agriculture land. Raw materials and end products are transported within the plant premises with the help of closed conveyor belts to reduce impact of transport.

5.	Fly ash shall be utilized as per the provisions of Fly AshNotification-1999, subsequently amended in 2003. Fly ash shall be stored in ashsiloand100% used in the cement manufacturing	Fly ash is being utilized as per 1999, subsequently amended Fly ash is being transported is stored in Silos having capa and 100 % fly ash is used in cer Consumption of fly ash is as Yearly Fly Ash Cor Year Qty 2014-2015 2015-2016	d in 2003. by the means of closed bu city of ement manufacturing. follows:	
		2016-2017	810908	
		2017-2018	701922	
		2018-2019	855770	
		2019-2020	808392	
		2020-2021	906630	
7.	The company shall make the efforts to utilize the high calorific hazardous waste in the cement kiln and necessary provisions shall be made accordingly. The company shall keep the record of the waste utilized and shall submit the details to Ministry's Regional Office at Bhopal, CPCB and SPCB. Total water requirement shall not exceed 2500 m3/day.	Permission for utilization of cement kiln has been taken. Copy of same is enclosed as Record of the waste utilized to the Ministry's Regional Of Details of hazardous waste u Water consumption will not consumption is mentioned b Waste water generated is capacity of 600 KLD and the development of green belt. Water consumption details is STP treated water analysis rep Photographs of STP and Gree STP of capacity 600 KLD has	Annexure 5. I is being maintained and it fice at Bhopal, CPCB and S used are as follows: exceed 2500 m3 / day. Deta below: treated with the help of e treated water is being u enclosed as Annexure 5 (a port is enclosed as Annexu n Belt is enclosed as Annexu	s submitted SPCB. ails of water STP having used for the a). ure 5 (b). xure 5 (c).
	utilities shall be reutilized for green belt development and other plant related activities i.e. Cooling and dust suppression in raw material handlingarea etc., after necessary treatment. 'Zero' discharge shall be strictly adopted and no effluent from the process shall be discharged outside the premises.	waste water generated and th for green belt development, sludge waste so generated fro as manure in plantation. No effluent discharge from maintained the Zero discharge Analysis of treated water is er	e treated waste water is b dust suppression and cool om the sewage treatment p the plant premises is the e.	eing utilized ling and the plant is used
8	Rainwater harvesting measures shall be adopted for the augmentation of ground water at cement plant, colony and mine site.	Rain water harvesting measures have been implemented in plant premises as well in Mines and nearby villages. Details of water harvesting measures are mentioned below:		-

 Water harvesting pond of capacity 13 Lac m³ has been constructed in Mines area. 7 Nos. of Roof Top rain water harvesting has been developed to
harvest rain water.
3. Runoff Water Harvesting Structure Near Guest House.
4. Ground water recharge with 3 Abandoned bore-wells.
5. Groundwater Recharge Pit Connected with Storm Drain - A type Colony.
6. Groundwater Recharge Pit Connected with Storm Drain - Near Nursery
7. Ground water recharge with abandoned bore well near steel yard.
8. Recharge Bore Hole for Recharging the Ground Water - 22 Nos
9. Deepening of Ponds at Mankahari and Bamhauri village with Hume pipe and ground water recharge system.
10. Construction of water reservoir at Baghai village for water conservation.
Photographs of rain water Harvesting Structure is enclosed as Annexure 6.
 There are 7 Nos of Roof top rain water harvesting structures in plant premises These are: MRSS building Project Office building School Building. Cement Mill Unit II Load Center Cooler load Center of Unit I Cooler load Center of Unit II Cooler load Center of Unit II Store building. Filters have been installed at roof top drain so as to filter out the dust, grits solid contents into bore-wells. The company collects rain water in the mined out pits of captive lime and use the same water for the various activities.
crusher hopper, green belt development etc. Rain water harvesting pond with capacity of 13 lac m3 has been
developed and the harvested water is used for various purpose whichhelps conservation of fresh ground water.
Rain water Harvesting structures have been measures have been implemented in nearby villages are also. Some of them are as follows:
1. Deepening of Ponds at Mankahari and Bamhauri village with Hume pipe and ground water recharge system.
 Construction of water reservoir at Baghai village for water conservation. The action plan is submitted to Ministry's Regional Office at Bhopal. Copy of same is enclosed as Annexure7.

9	The project proponent shall modify the mine plan of the project at the time of seeking approval for the next mining scheme from the Indian Bureau of Mines so as to reduce the area for external over burden dump by suitably increasing the height of the dumps with proper terracing. It shall be ensured that the overall slope of the dump does not exceed 28°.	 We have obtained approval of further Schemes of mining for the leases of PCL as follows: 1. 772.067 ha (Hinauti & Sijahata) vide IBM letter no MP/Satna/Limestone/RMP-39/2019-20 Dt.31.03.2020, 2. 99.416 ha (Hinauti & Sijahata) vide IBM letter no MP/Satna/Limestone/RMP-44/17-18Dt. 27.04.2017, 3.512.317ha (Baghai) vide IBM letter no MP/Satna/Limestone/RMP-57/2020-21 Dt.09.04.2021 and 4. 117.594 ha (Mendhi) vide IBM letter no MP/Satna/Limestone/M.Sch-6/16-1 Dt. 04.11.2016by the Indian Bureau of Mines. Copy of approval letter is enclosed as Annexure 8. Dump height and slope has been maintained as per guidelines. The details are enclosed as Annexure 9.
10	Top soil if any, shall be stacked with proper slope at earmarked site(s) only with adequate measures and should be used for reclamation and rehabilitation of mined out areas.	The top soil generated during Mining is being stacked at the earmarked site and is used for reclamation of Mined out area by spreading it over the waste rock after backfilling, and for plantation purpose.
11	The project proponent shall ensure that no natural water course shall be obstructed due to any mining and plant operations	 The Surface water bodies in area are observed as Tamas River, which is adjacent to the Hinauti & Sijhata Limestone Mine in North direction. The Magardaha nalla is located outside the lease area in the western side. Magardaha nalla ultimately joins the Tamas River. Nar Nala falls outside the lease area and flanks the Baghai mining lease from the western side. No natural water course is obstructed due tomining and plant operations. The company is taking following measures for Protection of the Tamas River, Magardaha Nala and Nar Nala (natural water course) which is adjacent to the Hinouti Sijhata and Baghai Limestone Mine in North East and west direction respectively. Solid barrier of minimum 60 m width has been made from the river bank to avoid the flow of surface run off to the River. Garland drains made along the slope of dumps. Rain water is channelized to a Settling Tank to eliminate silting of river and then discharged in natural drainage course. Plantation has been done all along inside safety barrier of Tamas River. Proper landscape has been developed near the River bank to avoid erosion.

		There is no proposal for diversion/ obstruction/ modification of any natural water course during mining activity.
	The company shall make the plan for protection of the natural water course passing nearby mine area and submit to the Ministry's Regional Office at Bhopal.	The proposal for natural water course protection passing nearby mines area is submitted. Copy is enclosed as Annexure no. 10.
12	The inter burden and other waste generated shall be stacked at earmarked dump site(s) only and should not be kept active for long period.	The inter burden and waste generated during mining has been stacked at earmarked dump site as per approved mining plan. Dumps have been stabilized simultaneously by planting local species and bushes i.e. Bouganvilliea, karanj, Alstonia, Neem etc.
		Total 36500 number of plantation has been done in Mines area and 7838 no. of plantation has been done in plant and colony premises. In addition to the above we have planted 81106 no. of plants during CSR activities in nearby village area FY 2020-21.
	The total height of the dumps shall not exceed 30 m in three terraces of 10 m each and the overall slope of the dump shall be maintained to 28. The inter burden dumps should be scientifically vegetated with suitable native species to prevent erosion and surface run off.	The total height of the dumps are not exceeding then 30 m and the slope of the dumps are maintained at 28 ⁰ . Details regarding dumps is enclosed as Annexure 9 .
	Monitoring and management of rehabilitated areas should continue until the vegetation becomes self- sustaining.	Monitoring and management of rehabilitated areas will be continued until the vegetation becomes self-sustaining.
	Compliance status should be submitted to the Ministry of Environment & Forests and its Regional Office, Bhopal on six monthly bases.	Compliance status is submitted on regular basis to Ministry of Environment & Forests and its Regional Office, Bhopal. Last EC Compliance was submitted vide letter no. PJL/ENV/2020/292 dated 01.12.20.
13	The void left unfilled shall be converted into water body.	Agreed. A Rain water harvesting reservoir has been already developed which is having capacity of 13 lakh Cubic meter. The accumulated water is used for industrial purpose at mine and cement plant. Proper landscaping is done around the water body.
	The higher benches of excavated void/mining pit shall be terraced and plantation to be done to stabilize the slopes. The slope of higher benches shall be made gentler for easy accessibility by local people to use the water body.	Mined out pit has been terraced and the gentle slope is stabled and planted with adequate vegetation of local species.
	Peripheral fencing shall be carried out along the excavated area.	Fencing is being done around the periphery of Mines excavated area.

14	Catch drains and siltation ponds of appropriate size should be constructed for the working pit, inter-burden and mineral dumps to arrest flow of silt and sediment.	Approximately 720 m. of Catch drains along dumps and 02 siltation ponds of appropriate size have been constructed. The catch drains are for inter-burden andMineral dumps to arrest flow of silt and sediment. Garland drain along lease boundaries of 3.0 Km (cumulative in two locations) has been constructed. Check dams have been made at regular intervals in garland drains to hinder the flow of rain water and to arrest the silt.
	The water so collected should be utilized for watering the mine area, roads, green	Complying with. The water so collected is being utilized for watering of Mine area,
	belt development etc.	green belt development etc.

	The drains should be regularly de-silted, particularly after monsoon, and maintained properly.	The drains are regularly de- silted, particularly after monsoon, and maintained properly
15	Garland drain of appropriate size, gradient and length shall be constructed for both mine pit and inter-burden dumps and sump capacity should be designed keeping 50% safety margin over and above peak sudden rainfall (based on 50 years data) and maximum discharge in the area adjoining the mine site. Sump capacity should also provide adequate retention period to allow proper settling of silt material. Sedimentation pits should be constructed at the corners of the garland drains and de-silted at regular intervals.	Garland drain having dimension of cumulative length of 3.0 Km, a width of 2.0 to 3 meters and depth of 0.75 to 1.2 meter. It is having appropriate gradient followingNatural contour. Sump size of length 25m x width 15m and depth 4m. has been constructed along the garland drain. One additional siltation ponds has been constructed. It is having a capacity of 50% safety margin to accommodate over and above peak sudden rainfall and maximum Discharge in the area. Garland drains and de-siltation ponds are de-silted at regular intervals, especially after monsoon.
16	Dimension of the retaining wall at the toe of inter-burden dumps and inter-burden benches within the mine to check run-off and siltation should be based on the rain fall data.	Retaining walls and toe drains are maintained to check runoff and siltation.
17	Regular monitoring of ground water leveland quality should be carried out by establishing a network of existing wells and constructing new piezometers at suitable locations by the project proponent in and around project area in consultation with Regional Director, Central Ground Water Board. The frequency of monitoring should be four times a year- pre-monsoon (April / May), monsoon (August), post monsoon (November), and winter (January). Data thus collected shall be sent at regular intervals to Ministry of Environment and Forests and its Regional Office at Bangalore, Central Ground WaterAuthority and Central Ground Water Board.	Regular monitoring of ground water level and quality is being carried out by the means of constructed Piezometers at the site in and around Project area. Frequency of monitoring is four times a year- pre-monsoon (April / May), monsoon (August), post monsoon (November), and winter (January). The monitoring results for Ground water Quality & water level is being submitted to the MoEF, New Delhi, Regional Office of MoEF, Bhopal, Central Ground Water Authority, New Delhi, Central Ground Water Board, Bhopal on regular basis. Analysis report is enclosed as Annexure 11.
18	Blasting operation should be carried out only during the daytime. Controlled blasting shall be practiced. The mitigative measures for control of ground vibrations and to arrest fly rocks and boulders shall be implemented	 Complying with. Blasting operations are carried out during the day time only. Controlled blasting is carried out according to the recommendation of Central Institute of Mining And Fuel Research. The salient recommendations are given below: The AOP has been recorded within prescribed limits All the recorded data (blast vibrations, air overpressures and fly rocks) were well within the safe limit at the houses/structures concerned. The dominant peak frequencies ofground vibrations were in the range of 11.4 to 129 Hz. FFT analysis of blast vibration frequencies confirmed that concentration of frequencies is in band of 13.3-40.3 Hz.

		 So, the safe level of vibration has been taken as 10 mm/s for the safety of houses/structures of the surrounding villages as per DGMS standard. Propagation equation for the prediction of blast vibration has been established and is given as Equation 1. The permissible explosive weight per delay may be computed from the Equation to contain vibration within safe limits for distances of houses/ structures concerned. For convenience, the recommended explosives weight per delay has been computed and is given in Table A3. The delay interval between the holes in a row should be 17 ms whereas between the rows, it should be 65 ms or more depending upon the number of rows and effective burden. If the numbers of rows are more than two, the delay interval between rows should be increased by 15% in successive rows. It is recommended that the existing Nonel initiation system should be continued in the Blasting operations and Electronic initiation systems should be 0.3 to 0.5 m for a blast hole depth of 6 to 7 m and should be initiated from the Bottom of the hole. It is advisable to use blasting mate with sand bags in sensitive area to ensure any non ejection of fly rocks. For this Nonel as well as electronic system may be used as an Initiation system.
		Vibration report is enclosed as Annexure 12.
19	The project proponent shall adopt wet drilling.	Complying with Regular wet drilling is practiced.

20	As proposed, green belt should be developed in 33% in and around the plant as per the CPCB guidelines.	7838 no. of plantation has been	ion has been done in Mines area and done in plant and colony premises. ve planted 81106 no. of plants during rea FY 2020-21.
21	All the recommendations of the Corporate	Action Plan	Compliance status
	Responsibility for Environmental Protection (CREP) shall be strictly followed.	Cement Plant, which are not complying with notified standards shall do the following to meet the standards Augmentation of existing Air Pollution Control Devices : by July 2003	Complied with.
		Replacement of existing Air Pollution Control devices : by July 2003	
		Cement plants located in the critically polluted or urban areas (including 5 Km distance outside urban boundary) will meet 100 Mg/Nm3 limit of particulate matter by December 2004 and continue working to reduce the emission of the particulate to 50 mg/Nm3	Complied with. We are achieving the PM emission norms within 30 mg/Nm3.
		The new cement kilns to be accorded NOC/Environmental Clearance w.e.f 01.04.2003 will meet the limit of 50 mg/Nm3 for particulate matter emissions	Complied.
		CPCB will evolve load based standards by December 2003 CPCB & NCBM will evolve SO2 & NOx emission standards by	Not applicable.
		June 2004 The cement industries will control fugitive emissions from all the raw material and products storage and transfer points by December 2003. However, the feasibility for the control of fugitive emissions from limestone and coal storage areas will be decided by the National Task	Complied Bag Filters installed at all Material transfer points, Water spraying regularly on haul roads.

	Environment and Forests and its Regional Office, Bhopal	Copy is enclosed as Annexure 13	3.
23	Digital processing of the entire lease area using remote sensing technique should be done regularly once in three years for monitoring land use pattern and report submitted to Ministry of		e area using remote sensing technique has been submitted to MoEF&CC and
22	should be covered with a tarpaulin and shall not be overloaded.	zone are provided with tarpaulin	ortation of minerals outside the core n and no overloading is allowed.
~~	under control and regularly monitored. Measures shall be taken for maintenance of vehicles used in mining operations and in transportation of mineral. The vehicles	vehicles is done as per manu changing of timely diesel filters, of engines etc.	facturer's maintenance schedule i.e. calibration of Fuel pump, overhauling s allowed inside the plant and mines
22	Vehicular emissions should be kept	Cement industries will carry out feasibility study and submit target dates to CPCB for co-generation of power by July 2003 Vehicular emission is kept unde	Agreed.
		NCBM will carry out a study on hazardous waste utilization in cement kiln by December 2003	Not Applicable
		Industries will submit the target date to enhance the utilization of waste material by April 2003	We are using the AFR waste material in our kiln.
		2003 Trippings in kiln ESP to be minimized by July 2003 as per the recommendation of NTF	Complied.
		NTF will decide feasible unit operations/sections for installation of continuous monitoring equipment. The industry will install the continuous monitoring systems (CMS) by December	
		evaluation of various types of continuous monitoring equipment and feedback from the industries and equipment manufacturers,	monitoring systems (CEMS) in all process stack.
		refineries will jointly prepare the policy on use of petroleum coke as fuel in cement kiln by July 2003 After performance	Installed continuous
		submit its recommendations within three months CPCB , NCBM, BIS and Oil	We are using pet coke.

24	A Final Mine Closure Plan along with details of Corpus Fund should be submitted to the Ministry of Environment& Forests 5 years in advance of finalmine closure, for approval.	The documents will be submitted well before the 5 years of mine closure.
25	The company shall comply with all the commitments made during public hearing on 22 nd May, 2008.	Adhering to the given condition we will strictly Comply with all the commitments made during public hearing on 22ndMay, 2008.The public hearing comments are enclosed as Annexure 14.
	B. General Condition:	
1	The project authority shall adhere to the stipulations made by State Pollution Control Board (SPCB)and State Government.	Cement plant and all the mining operation are carried out with valid consent under air and water act issued by SPCB. The copy of consent is enclosed as Annexure-15 .
2	No further expansion or modification of the plant shall be carried out without prior approval of this Ministry	Agreed, further expansion or modification will be carried only after obtaining the permission from Ministry.
3	At least four ambient air quality monitoring stations shall be established in the down wind direction as well as where maximum ground level concentration of SPM, SO2 and NOx are anticipated in consultation with the SPCB	We are regularly monitor the ambient air quality at different locations in villages.
4	Data on ambient air quality and stack emissions shall be regularly submitted to this Ministry including its Regional Office and SPCB /CPCB once in six months.	Complying with. Data on ambient air quality and stack emissions are being regularly submitted.
5	Industrial waste water shall be properly collected and treated so as to conform to the standards prescribed under GSR 422(E) dated 19 th May,1993 and 31 st December,1993 or as amended from time to time. The treated waste water shall be utilized for plantation purpose.	No industrial wastewater is generated as the cement plant is operated on dry process. For domestic wastewater, there is a sewagetreatment plant with capacity of 600 KLD.

		WATER
		STP treated water analysis report is enclosed as Annexure 5 (b). Mines workshop treated water Analysis Report is enclosed as
6	The overall noise levels in and around the plant area shall be kept well within the standards [85 dB(A)] by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation.	Annexure- 16 The overall noise level is within threshold limit of 85 dB(A). To arrest the noise levels all equipment are equipped with acoustic hoods, silencer, enclosures etc. besides that operators havebeen provided with PPE. Green belt is developed along the plant andmining area to minimize the noise pollution.
	The ambient noise levels shall conform to the standards prescribed under Environmental (Protection) Act,1986 Rules,1989 viz. 75 dB(A) (day time) and 70 dB(A) (night time).	Ambient Noise levels are maintained well within the prescribed norms under Environmental (Protection) Act, 1986 Rules, 1989. Noise Monitoring report is enclosed as Annexure 4 .
7	Proper housekeeping and adequate occupational health programs shall be taken up. Occupational Health Surveillance programme shall be done on a regular basis and records for at least30-	We have already conducted various healthsurveillance programs whose records aremaintained properly. Also sufficient preventive measures are adopted during the plant and mining operation to avoid direct exposure to dust etc.

	to years. The programme shall include	Occupational Health Survey (OHS)	
	40 years. The programme shall include lung function and sputum analysis		
	maintained properly tests once in six months. Sufficient preventive measures shall be adopted to avoid direct exposure to dust etc	a) Periodical Medical Examinations are conducted of each employee by outsidespecialists once in every y years. Under this scheme each employeeundergoes Pathologica tests, blood grouptest, chest X-Rays, Audiometry tests, eyetest etc once every 5 years. Proper records of such tests are maintained. No a single case of any occupational disease has so far been detected in our mines/plant. – Sample medical examination note is displayed.	
		b) Welfare Amenities: A well-equipped Dispensary has beenprovided with Provision of Ambulance,Pathological Laboratory& X-Ray, andAudiometry etc.	
		OHC reports are enclosed as Annexure 17 (a). Details of various health programmes conducted is enclosed as Annexure 17 (b).	
7	The company shall undertake eco- development measures including community welfare measures in the project area.	Various programs per training to eco development and community welfare has been taken up by the company. Various Social, educational, healthcare and environment initiative shave been taken by the company.	
		Details of CSR Activities of year 2020-21 are enclosed as Annexure 18.	
8	The project proponent shall also comply with all the environmental protection measures and safeguards recommended in the EIA/ EMP.	 Complying with We are strictly adhering with the Environment protection measures as stipulated in approved EMP ofmines. Environment Management measures adopted in Prism Johnson Limited:- Air Pollution Control Measures i.e. bag house, ESP and bag filters installed at all process stack & transfer tower respectively. Truck mounted road sweeping machine for fugitive emission control. CO2 abatement by the way of plantation. Limiting and minimization of hazardousmaterials and chemicals during manufacturing and zero disposal of hazardous waste within the boundaries. 	
		 Fleet and route optimization for energy and fuel saving resulting in a reduction of the CO2 emission. Installation of Continuous Emission Monitoring System (CEMS) to monitor and analyze the flue gas emitting from the stack and other emission devices. Installation of bag filter, bag house and Electrostatic Precipitators (ESP) to prevent the emission of Particulate Matters. Continuous and regular housekeeping of shop floor and premises to collect the waste generated and put back that waste back into a process which is to target circular economy. Zero waste has been generated through processing; all waste is reused for manufacturing. 	

9	Environmental Management Cell has to be	 9. Rigid pavements have been constructed within the plant and in the vicinity of plant for the transportation of the fleets. 10. Carbon sinks have been made; plantation have been done in the periphery of the establishment under to absorb the CO2 emitted and to become a carbon neutral. 11. In house Sewage Treatment Plant (STP) of the capacity of 600KLD has been in operation from (1996) and the no all treated water is used in nursery and in manufacturing operations especially for cooling purposes. 12. Various AFRs likecarbon black and plastic waste have been used to as a fuel to avoid disposal of the waste. 13. Natural STP has been set up to reuse the leaked or spilled water during the operations and the treated water is used for gardening purposes. 14. All the water pipelines are reviewed and maintained on a regular basis. Leaked taps have been replaced immediately which resulted in saving water resources. 15. Mist Cannons are used to prevent the fugitive emissions occurred during the operations. 16. Installation of Waste Heat Recovery System (WHRS) and Selective Non-Catalytic Reduction (SNCR) has been carrying out to reduce the impact of CO2& Nox on the environment respectively. 17. Solar Panels of the capacity of 17MW which is 40% of the total energy required for the entire establishment are being installed. Environmental Management Cell is functioning effectively, Structure
	established to carry out functions relating to environmental management action plans. The head of the cell should directly report to the Chief Executive	of which is enclosed as Annexure 19.
10	The capital cost and recurring cost annum earmarked for environmental protection equipments shall be Rs. 115 Crores and Rs.3.20 Crores to implement the conditions stipulated by the Ministry of Environment and Forests as well as the State Government. Time bound implementation schedule for implementing all the conditions stipulated herein shall be submitted. The funds so provided shall not be diverted for any other purpose.	Complying with the condition, the capital cost and the recurring cost earmarked for environmental protection are not diverted for any otherpurpose. Year Wise Recurring Expenditure for Environmental Management is enclosed as Annexure 20 .
11	The Regional Office of this Ministry / CPCB / SPCB shall monitor the stipulated conditions. The project authorities shall extend full cooperation to the officer (s) of the Regional Office by furnishing the requisite data / information / monitoring reports.	Agreed. Full cooperation shall be provided to the officer(s) of the Regional Officer in furnishing the requisite data/ information/ monitoring reports.

	A six monthly compliance report and the monitored data along with statistical interpretation shall be submitted to them	Six monthly compliance report and the monitored data is being submitted to Regional Office of the Ministry / CPCB / SPCB regularly. Last compliance report was submitted vide letter no –
	regularly.	PJL/ENV/2020/292 dated 01.12.20.
12	The Project Authorities shall inform the	The copy of the intimation of the financial closure
	Regional Office as well as the Ministry, the	Of the project is enclosed as Annexure-21.
	date of financial closure and final approval	
	of the project by the concerned	
	authorities and the date of commencing	
	the land development work.	
13	No change in mining technology and scope of working shall be made without	Agreed. No change in mining technology and scope of working will be made
	prior approval of the Ministry of	without prior approval of the Ministry of Environment & Forests.
	Environment & Forests.	without phot approval of the ministry of Environment of ofests.
	No change in the calendar plan including	
	excavation, quantum of limestone and	
	waste shall be made.	
14	Measures should be taken for control of	Noise monitoring is carried out on regular basis so as to comply with
	noise levels below 85dB (A) in the work	the prescribed norms.
	environment. Workers engaged in	Workers and employees are provided with earmuffs and necessary
	operations of HEMM etc. should be provided with ear plugs/muffs.	PPE's.
15	Industrial waste water (workshop and	No industrial wastewater is generated as the cement plant is operated
.,	waste water from the mine) should be	on dry process.
	properly collected, treated so as to	
	conform to the standards prescribed	For domestic wastewater, there is a sewage treatment plant of the
	under GSR 422 (E)dated19thMay, 1993	state-of -art technology. Ithas the capacity to treat domestic
	and 31st December 1993 or as amended	wastewater of 600 KLPD.
	from time to time. Oil and grease trap	
	should be installed before discharge of	Contaminated water generated due to washing of equipment is
	workshop effluents.	passed though grease and oil traptank having separation chambers and pumpingarrangement. For separation of oil and greaseparticles
		from water, prime mover has beenprovided. The oil and grease is
		skimmed and keptin sealed barrels for further disposal to authorized
		vendors.
16	Personnel working in dusty areas should	Personal protective Equipment's are being provided to the workers
	wear protective respiratory devices and	and they are given adequate training and information regarding safety
	they should also be provided with	and health aspects related to the kind of job they are engaged in.
	adequate training and information on	Regular Health check-up program is conducted is done for the
	safety and health aspects. Occupational	workers.
	health surveillance program of the workers should be undertaken	
	periodically to observe any contractions	
	due to exposure to dust and take	
	corrective measures, if needed.	
17	The project authorities shall inform to the	The copy of the intimation of the financial closureof the project is
	Regional Office located regarding date of	enclosed as Annexure-21.
	financial closures and final approval of the	
	project by the concerned authorities	
	and the date of start of land development	
	work.	

18	A copy of clearance letter will be marked	Complied.
	to concerned Panchayat / local NGO, if	
	any, from whom suggestion /	
	representation, if any, was received while	
	processing the proposal.	
19	State pollution control board should	
	display a copy of the clearance letter at	
	the Regional Office, District Industry	
	Centre & Collector's office/ Tehsildar's	
	office for 30 days.	
20	The project authorities shall advertise	Complied.
	at least in two local newspapers widely	The advertisement regarding issuance of Environment clearance and
	circulated, one of which shall be in the	the copy of same is available at State Pollution Control Board and also
	vernacular language of the	at web site of the Ministry of Environment and Forests at
	localityconcerned, within 7 days of the	"http://envfor.nic.in" was given in two newspapers i.e. Navswadesh
	issue of the clearance letter informing that	and DeshBandhu on 25.09.2008.
	the project has been accorded	
	environmental clearance and a copy of the	Copy of advertisement is enclosed as Annexure 22.
	clearance letter is available with the State	
	Pollution Control Board and also at web	
	site of the Ministry of Environment and	
	Forests at "http://envfor.nic.in" and a copy	
	of the same shall be forwarded to the	
	Regional Office of this Ministry.	

TEST REPORT NO: ECO LAB/Stack1/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF STACK EMISSIONS*

Name of the Company Address of the Company	:	M/s Prism Johnson Ltd. Village Mankahari Tehsil Rampur Baghelan District Satna (M.P.)
Date of Monitoring	:	11.11.2020
Sample Collected by	:	Mr.Maan Singh
Source of Emission	:	Raw Mill Emission
Sampling Method	:	IS: 11255
Instrument Used	:	Stack Monitoring Kit
Details of Stack		
Material of Construction	:	M.S.
Stack Attached to	:	Kiln/Raw Mill Unit-1
Stack Height (m)	:	100
Stack Top	:	Circular
Inside Diameter of Stack (m)	:	4.75
(at sampling point)		
Cross Sectional Area of Duct/Stack (m ²)	:	17.71
Ambient Air (°C)	:	32.0
Flue Gas Temperature (°C)	:	128.0
Exit Velocity of Gas (m/sec.)	:	13.85
Flow Rate (Nm ³ / sec.)	:	177.69
APCD if any	:	Bag House

Sl. No.	Tests Conducted	Method	Pollutant Concentration in (At 10% O ₂)
1.	Particulate Matter (PM) (mg/Nm ³)	IS:11255 (Part-1)	19.50
2.	Sulphur Dioxide (SO ₂) (mg/Nm ³)	IS:11255 (Part-2)	16.20
3.	Nitrogen Oxides (NOx) (mg/Nm ³)	IS:11255 (Part-7)	525.10

*The results are related only to item tested.

Authorized Signatory

TEST REPORT NO: ECO LAB/Stack2/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF STACK EMISSIONS*

Name of the Company Address of the Company	:	M/s Prism Johnson Ltd. Village Mankahari Tehsil Rampur Baghelan District Satna (M.P.)
Date of Monitoring Sample Collected by Source of Emission Sampling Method Instrument Used	: : :	11.11.2020 Mr.Maan Singh Raw Mill Emission IS: 11255 Stack Monitoring Kit
Details of Stack Material of Construction Stack Attached to Stack Height (m) Stack Top Inside Diameter of Stack (m) (at sampling point) Cross Sectional Area of Duct/Stack (m ²) Ambient Air (°C) Flue Gas Temperature (°C) Exit Velocity of Gas (m/sec.) Flow Rate (Nm ³ / sec.) APCD if any		M.S. Kiln/Raw Mill Unit-2 100 Circular 4.75 17.71 32.0 141.0 14.28 177.45 Bag House

Sl. No.	Tests Conducted	Method	Pollutant Concentration in (At 10% O ₂)
1.	Particulate Matter (PM) (mg/Nm ³)	IS:11255 (Part-1)	22.10
2.	Sulphur Dioxide (SO ₂) (mg/Nm ³)	IS:11255 (Part-2)	15.80
3.	Nitrogen Oxides (NOx) (mg/Nm ³)	IS:11255 (Part-7)	516.50

*The results are related only to item tested.

Authorized Signatory

TEST REPORT NO: ECO LAB/Stack3/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF STACK EMISSIONS*

Name of the Company Address of the Company			M/s Prism Johnson Ltd. Village Mankahari Tehsil Rampur Baghelan
Date	of Monitoring		District Satna (M.P.) 12.11.2020
	ble Collected by	•	Mr.Maan Singh
	ce of Emission	•	Coal Mill Emission
	oling Method		IS: 11255
-	ament Used	:	Stack Monitoring Kit
Deta	ils of Stack		
	rial of Construction	:	M.S.
	Attached to	:	Coal Mill Unit-1
Stack	Height (m)	:	65.0
Stack	•	:	Circular
	e Diameter of Stack (m) :	2.24
	mpling point)	, ,	
· ·	Sectional Area of Duc	$t/Stack(m^2)$:	3.94
Ambient Air (°C)			30.0
Flue Gas Temperature (°C)			89.0
Exit Velocity of Gas (m/sec.)			8.85
Flow Rate (Nm ³ / sec.)			27.98
APCD if any		:	Bag House
SI No	Tasts Conducted	Mathad	Pollutant Concentration

Sl. No.	Tests Conducted	Method	Pollutant Concentration
1.	Particulate Matter (PM) (mg/Nm ³)	IS:11255 (Part-1)	19.85

*The results are related only to item tested.

Authorized Signatory

TEST REPORT NO: ECO LAB/Stack4/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF STACK EMISSIONS*

Name of the Company Address of the Company			M/s Prism Johnson Ltd. Village Mankahari Tehsil Rampur Baghelan District Satna (M.P.)
Date	of Monitoring	•	12.11.2020
	ble Collected by	:	Mr.Maan Singh
	e of Emission	:	Coal Mill Emission
	ling Method	:	IS: 11255
-	iment Used	:	Stack Monitoring Kit
Detai	ils of Stack		
	rial of Construction	:	M.S.
Stack	Attached to	:	Coal Mill Unit-2
Stack	Height (m)	:	65.0
Stack	• • •	:	Circular
Insid	e Diameter of Stack (m) :	2.24
(at sa	mpling point)		
Cross	Sectional Area of Duc	$t/Stack(m^2)$:	3.94
Ambient Air (°C)			32.0
Flue Gas Temperature (°C)			89.0
Exit Velocity of Gas (m/sec.)			9.82
Flow Rate $(Nm^3/sec.)$			31.05
APCD if any		:	Bag House
SI No	Tasts Conducted	Mathad	Pollutant Concentration

Sl. No.	Tests Conducted	Method	Pollutant Concentration
1.	Particulate Matter (PM) (mg/Nm ³)	IS:11255 (Part-1)	15.20

*The results are related only to item tested.

Г

Authorized Signatory

TEST REPORT NO: ECO LAB/Stack5/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF STACK EMISSIONS*

Name of the Company Address of the Company	:	M/s Prism Johnson Ltd. Village Mankahari Tehsil Rampur Baghelan
Date of Monitoring Sample Collected by Source of Emission	: :	District Satna (M.P.) 12.11.2020 Mr.Maan Singh Cooler Stack Emission
Sampling Method	:	IS: 11255
Instrument Used	:	Stack Monitoring Kit
<u>Details of Stack</u>		
Material of Construction	:	M.S.
Stack Attached to	:	Cooler Unit-1
Stack Height (m)	:	50.0
Stack Top	:	Circular
Inside Diameter of Stack (m)	:	4.5
(at sampling point)		
Cross Sectional Area of Duct/Stack (m ²)	:	15.89
Ambient Air (°C)	:	30.0
Flue Gas Temperature (°C)	:	239.0
Exit Velocity of Gas (m/sec.)	:	11.60
Flow Rate $(Nm^3/sec.)$:	104.58
APCD if any	:	ESP
		1

SI. No.	Tests Conducted	Method	Pollutant Concentration	
1.	Particulate Matter (PM) (mg/Nm ³)	IS:11255 (Part-1)	25.20	

*The results are related only to item tested.

Authorized Signatory

TEST REPORT NO: ECO LAB/Stack6/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF STACK EMISSIONS*

Name of the Company Address of the Company	:	M/s Prism Johnson Ltd. Village Mankahari Tehsil Rampur Baghelan District Satna (M.P.)
Date of Monitoring	:	12.11.2020
Sample Collected by	:	Mr.Maan Singh
Source of Emission	:	Cooler Stack Emission
Sampling Method	:	IS: 11255
Instrument Used	:	Stack Monitoring Kit
Details of Stack		
Material of Construction	:	M.S.
Stack Attached to	:	Cooler Unit-2
Stack Height (m)	:	50.0
Stack Top	:	Circular
Inside Diameter of Stack (m)	:	4.5
(at sampling point)		
Cross Sectional Area of Duct/Stack (m ²)	:	15.89
Ambient Air (°C)	:	30.0
Flue Gas Temperature (°C)	:	220.0
Exit Velocity of Gas (m/sec.)	:	13.92
Flow Rate (Nm ³ / sec.)	:	130.33
APCD if any	:	ESP

SI. No.	Tests Conducted	Method	Pollutant Concentration
1.	Particulate Matter (PM) (mg/Nm ³)	IS:11255 (Part-1)	24.80

*The results are related only to item tested.

Authorized Signatory

FORMAT NO. ECO/QS/FORMAT/12 TEST REPORT NO: ECO LAB/Stack7/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF STACK EMISSIONS*

Name of the Company	:	M/s Prism Johnson Ltd.
Address of the Company	:	Village Mankahari
		Tehsil Rampur Baghelan
		District Satna (M.P.)
Date of Monitoring	:	13.11.2020
Sample Collected by	:	Mr.Maan Singh
Source of Emission	:	Cement Mill Emission
Sampling Method	:	IS: 11255
Instrument Used	:	Stack Monitoring Kit
Details of Stack		
Material of Construction	:	M.S.
Stack Attached to	:	Cement Mill-1 (Unit II)
Stack Height (m)	:	49.0
Stack Top	:	Circular
Inside Diameter of Stack (m)	:	1.0
(at sampling point)		
Cross Sectional Area of Duct/Stack (m ²)	:	0.785
Ambient Air (°C)	:	29.0
Flue Gas Temperature (°C)	:	86.0
Exit Velocity of Gas (m/sec.)	:	6.96
Flow Rate (Nm ³ / sec.)	:	4.42
APCD if any	:	Bag House

Sl. No.	Tests Conducted	Method	Pollutant Concentration
1.	Particulate Matter (PM) (mg/Nm ³)	IS:11255 (Part-1)	16.40

*The results are related only to item tested.

Authorized Signatory

TEST REPORT NO: ECO LAB/Stack8/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF STACK EMISSIONS*

Name of the Company Address of the Company	:	M/s Prism Johnson Ltd. Village Mankahari Tehsil Rampur Baghelan
Date of Monitoring	:	District Satna (M.P.) 13.11.2020
Sample Collected by	:	Mr.Maan Singh
Source of Emission	:	Cement Mill Emission
Sampling Method	:	IS: 11255
Instrument Used	:	Stack Monitoring Kit
Details of Stack		
Material of Construction	:	M.S.
Stack Attached to	:	Cement Mill-2 (Unit II)
Stack Height (m)	:	49.0
Stack Top	:	Circular
Inside Diameter of Stack (m)	:	1.0
(at sampling point)		
Cross Sectional Area of Duct/Stack (m ²)	:	0.785
Ambient Air (°C)	:	29.0
Flue Gas Temperature (°C)	:	82.0
Exit Velocity of Gas (m/sec.)	:	7.29
Flow Rate (Nm ³ / sec.)	:	4.63
APCD if any	:	Bag House

Sl. No.	Tests Conducted	Method	Pollutant Concentration
1.	Particulate Matter (PM) (mg/Nm ³)	IS:11255 (Part-1)	15.60

*The results are related only to item tested.

Authorized Signatory

FORMAT NO. ECO/QS/FORMAT/12 TEST REPORT NO: ECO LAB/Stack9/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF STACK EMISSIONS*

:	M/s Prism Johnson Ltd. Village Mankahari Tehsil Rampur Baghelan District Satna (M.P.)
:	13.11.2020
:	Mr.Maan Singh
:	Cement Mill Emission
:	IS: 11255
:	Stack Monitoring Kit
:	M.S.
:	Cement Mill –2 (Unit –I)
:	36.0
:	Circular
:	0.96
:	0.72
:	30.0
:	84.0
:	7.35
:	4.31
:	Bag House

Sl. No.	Tests Conducted	Method	Pollutant Concentration
1.	Particulate Matter (PM) (mg/Nm ³)	IS:11255 (Part-1)	27.4

*The results are related only to item tested.

Authorized Signatory

FORMAT NO. ECO/QS/FORMAT/12 TEST REPORT NO: ECO LAB/Stack10/11/20 TEST REPORT ISSUE DATE: 24.11.2020

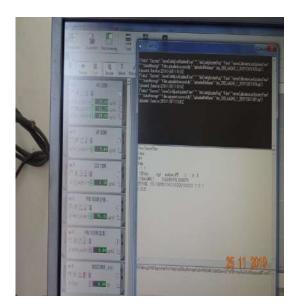
TEST REPORT OF STACK EMISSIONS*

Name of the Company	:	M/s Prism Johnson Ltd.
Address of the Company	:	Village Mankahari
		Tehsil Rampur Baghelan
		District Satna (M.P.)
Date of Monitoring	:	13.11.2020
Sample Collected by	:	Mr.Maan Singh
Source of Emission	:	Cement Mill Emission
Sampling Method	:	IS: 11255
Instrument Used	:	Stack Monitoring Kit
<u>Details of Stack</u>		
Material of Construction	:	M.S.
Stack Attached to	:	Cement Mill –1 (Unit –I)
Stack Height (m)	:	36.0
Stack Top	:	Circular
Inside Diameter of Stack (m)	:	0.96
(at sampling point)		
Cross Sectional Area of Duct/Stack (m ²)	:	0.72
Ambient Air (°C)	:	29.0
Flue Gas Temperature (°C)	:	90.0
Exit Velocity of Gas (m/sec.)	:	6.92
Flow Rate $(Nm^3/sec.)$:	3.99
APCD if any	:	Bag House

SI. No.	Tests Conducted	Method	Pollutant Concentration
1.	Particulate Matter (PM) (mg/Nm ³)	IS:11255 (Part-1)	20.30

*The results are related only to item tested.

Authorized Signatory



AAQMS Station

AAQMS Panel

Desktop showing monitoring data

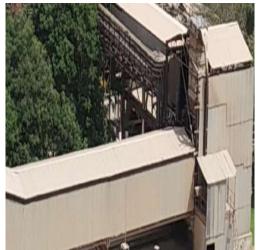
Continuous Emission Monitoring system Panel

LED Display of emission parameters at Main Gate of premises

Continuous Air Quality Monitoring Station

Continuous Stack Emission Monitoring Station

Plantation & Concrete roads



Water Sprinkling

Covered Conveyor Belt & Bag filters

Ξ	C	ON	AE	N	LA	B	OF	A	TO	RI	ES	P	/T.	LTD	

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ1/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF AMBIENT AIR*

:

:

:

:

:

Name of the Company Address of the Company M/s Prism Johnson Ltd. Village Mankahari

Tehsil Rampur Baghelan

District Satna (M.P.)

Mr. Maan Singh

FDS & RDS

IS: 5182

Sampling Method Instrument Used

Sample Collected by

				Limit as per National			
Sl. No.	Tests Conducted	Method	L1	L2	L3	L4	Ambient Air Quality
			10.11.2020	10.11.2020	10.11.2020	10.11.2020	Standards
1	$PM_{2.5}(\mu g/m^3)$	NAAQM guide line volume – I by CPCB	32.80	34.50	40.60	37.90	60
2	$PM_{10} (\mu g/m^3)$	IS:5182 (Part-23)	62.10	64.80	72.20	69.20	100
3	$SO_2(\mu g/m^3)$	IS:5182 (Part-2)	10.85	9.65	12.40	12.60	80
4	$NO_x(\mu g/m^3)$	IS:5182 (Part-6)	14.65	17.85	17.10	19.80	80
5	CO (mg/m ³)	IS:5182 (Part-10)	0.45	0.55	0.50	0.55	02

*The results are related only to item tested.

Note:

L1= NearPCL Colony L2=Near Guest House, L3= Near Crusher Unit-II L4= Near Admin. Building

Standards:

S1 = Ambient Air Quality Standard for Residential, Industrial & Rural Other Area

Signatory

Ecomen Laboratories Pvt. Ltd. Hut No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726

ECOMEN	LA	BO	RAT	ORIES	S PV1	LTD.
--------	----	----	-----	-------	-------	------

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

E

TEST REPORT NO: ECO LAB/AAQ2/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF AMBIENT AIR

Name of the Company Address of the Company	:	M/s Prism Johnson Ltd. Village Mankahari Tehsil Rampur Baghelan
Sample Collected by	:	District Satna (M.P.) Mr. Maan Singh
Sampling Method Instrument Used	:	IS: 5182 FDS & RDS

				Limit as per National			
Sl. No.	Tests Conducted	Method	L1	L2	L3	L4	Ambient Air Quality
			11.11.2020	11.11.2020	11.11.2020	11.11.2020	Standards
1	$PM_{2.5}(\mu g/m^3)$	NAAQM guide line volume – I by CPCB	45.80	38.40	30.50	29.70	60
2	$PM_{10} (\mu g/m^3)$	IS:5182 (Part-23)	69.20	65.80	49.20	58.10	100
3	$SO_2(\mu g/m^3)$	IS:5182 (Part-2)	10.10	14.30	13.70	14.80	80
4	$NO_x(\mu g/m^3)$	IS:5182 (Part-6)	17.50	18.20	19.60	20.50	80
5	CO (mg/m ³)	IS:5182 (Part-10)	0.55	0.45	0.30	0.25	02

*The results are related only to item tested.

Note:

L1= Nr Mines Site Office L3=Village Hinauti L2= Near Western Block Garden, L4= Village Sijahata

Standards:

S1 = Ambient Air Quality Standard for Residential, Industrial & Rural Other Area

Authorized Signatory

Ecomen Laboratories i'vt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726

ECOMEN LABORATORIES P	VT.	LTD.
-----------------------	-----	------

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601.GSTIN : 09AAACE6076H121

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ3/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF AMBIENT AIR

Name of the Company	:	M/s Prism Johnson Ltd.
Address of the Company	:	Village Mankahari
		Tehsil Rampur Baghelan
		District Satna (M.P.)
Sample Collected by	:	Mr. Maan Singh
Sampling Method	:	IS: 5182
Instrument Used	:	FDS & RDS

				Limit as per National				
Sl. No.	Tests Conducted	Method	L1	L2	L3	L4	Ambient Air Quality	
			11.11.2020	11.11.2020	11.11.2020	11.11.2020	Standards	
1	$PM_{2.5}(\mu g/m^3)$	NAAQM guide line volume – I by CPCB	29.80	36.50	40.10	37.10	60	
2	$PM_{10} (\mu g/m^3)$	IS:5182 (Part-23)	54.40	50.30	55.60	68.80	100	
3	$SO_2(\mu g/m^3)$	IS:5182 (Part-2)	10.10	11.80	11.60	10.10	80	
4	$NO_x(\mu g/m^3)$	IS:5182 (Part-6)	12.85	16.20	16.80	15.80	80	
5	CO (mg/m ³)	IS:5182 (Part-10)	0.45	0.35	0.40	0.45	02	

*The results are related only to item tested.

Note:

L1= Adiwasi Tola (Nr Bagahai ML Area) L3=South Side of Working Pit (Bagahai Mines) L4= Near Boundary Pillar No.64 Bagahai

L2= At BaisanTola (Nr. Bagahai ML Area),

Standards:

S1 = Ambient Air Quality Standard for Residential, Industrial & Rural Other Area

Authorized Signatory

Ecomen Laboratories i'vt. Ltd. 1 Iat No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726

ECOMEN LABORATORIES PVT. LTD.

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601.GSTIN : 09AAACE6076H121

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF WORK PLACE AIR MONITORING

Name of the Company	:	M/s Prism Johnson Ltd.
Address of the Company	:	Village Mankahari
		Tehsil Rampur Baghelan
		District Satna (M.P.)
Sample Collected by	:	Mr. Maan Singh
Sampling Method	:	IS: 5182
Instrument Used	:	FDS & RDS

				Limit as per			
Sl. No.	Tests Conducted	Method	L1	L2	L 3	L4	National Ambient Air
			12.11.2020	12.11.2020	12.11.2020	12.11.2020	Quality Standards
1	PM _{2.5} (µg/m ³)	NAAQM guide line volume – I by CPCB	50.80	45.60	49.80	45.40	60
2	$PM_{10} (\mu g/m^3)$	IS:5182 (Part-23)	79.20	82.30	80.60	78.10	100
3	$SO_2(\mu g/m^3)$	IS:5182 (Part-2)	17.80	14.70	12.10	10.90	80
4	$NO_x(\mu g/m^3)$	IS:5182 (Part-6)	18.20	16.30	17.90	15.40	80
5	CO (mg/m ³)	IS:5182 (Part-10)	0.55	0.50	0.52	0.45	02

*The results are related only to item tested.

Note:

L1= Near Cement Mill Unit –II L3= Near Packing Plant L2= Near Railway Yard, L4= Kiln Unit-II

Authorized Signatory

Ecomen Laboratories Pvt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726

Ξ	CC	DM	EN	1	LA	B	OF	A	TO	RI	ES	PV	Τ.	LTD	

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ5/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF AMBIENT AIR

:

:

:

:

:

Name of the Company Address of the Company M/s Prism Johnson Ltd. Village Mankahari Tehsil Rampur Baghelan District Satna (M.P.) Mr. Maan Singh

Sampling Method Instrument Used

Sample Collected by

IS: 5182

FDS & RDS

				Result		Limit as per National		
Sl. No.	Tests Conducted	Method	L1	L2	L3	L4	Ambient Air Quality	
			12.11.2020	12.11.2020	12.11.2020	12.11.2020	Standards	
1	$PM_{2.5}(\mu g/m^3)$	NAAQM guide line volume – I by CPCB	30.10	33.70	29.50	27.20	60	
2	$PM_{10} (\mu g/m^3)$	IS:5182 (Part-23)	62.10	75.60	64.90	48.10	100	
3	$SO_2(\mu g/m^3)$	IS:5182 (Part-2)	8.95	12.40	13.10	12.20	80	
4	$NO_x(\mu g/m^3)$	IS:5182 (Part-6)	12.80	15.30	20.80	19.30	80	
5	CO (mg/m ³)	IS:5182 (Part-10)	0.50	0.45	0.40	0.45	02	

*The results are related only to item tested.

Note:

L1=Nr. Nar Nala Bridge, L2= Nr. Medhi Mines Boundary Pillar No 28 L3=Nr. Medhi Mines Boundary Pillar No.23L4= Village Malgaon

Standards:

S1 = Ambient Air Quality Standard for Residential, Industrial & Rural Other Area

Authorized Signatory

Ecomen Laboratories i'vt. Ltd. 1 lat No.8 Second Floor Arif Chamber Sector-H. Aliganj, Lucknow-226024 Ph.2746282 Fax-2745726

-	C	O	AE	EN	L	A	B	0	R	A	T	0	R	IE	S	P	V	T.	Ľ	TD).

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ6/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF AMBIENT AIR

:

:

:

:

:

Name of the Company Address of the Company M/s Prism Johnson Ltd. Village Mankahari Tehsil Rampur Baghelan District Satna (M.P.)

Sampling Method Instrument Used

Sample Collected by

Mr. Maan Singh IS: 5182

FDS & RDS

				Result		Limit as per National	
SI. No.	Tests Conducted	Method	L1	L2	L3	L4	Ambient Air Quality
				13.11.2020	13.11.2020	13.11.2020	Standards
1	$PM_{2.5}(\mu g/m^3)$	NAAQM guide line volume – I by CPCB	27.90	25.20	29.80	30.10	60
2	$PM_{10} (\mu g/m^3)$	IS:5182 (Part-23)	42.50	57.20	47.50	58.30	100
3	$SO_2(\mu g/m^3)$	IS:5182 (Part-2)	10.05	12.80	12.65	11.70	80
4	$NO_x(\mu g/m^3)$	IS:5182 (Part-6)	13.85	18.20	16.20	18.60	80
5	CO (mg/m ³)	IS:5182 (Part-10)	0.25	0.40	0.35	0.30	02

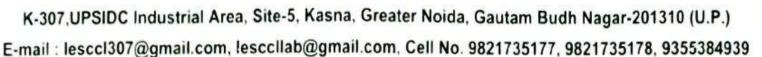
*The results are related only to item tested.

Note:

L1=Village Badarkha L3= Village Chulhi

L2= Village Hinauta L4= Village Kulhari

Standards:


S1 = Ambient Air Quality Standard for Residential, Industrial & Rural Other Area

Signatory

Ecomen Laboratories i'vt. Ltd. Hist No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726

(A Division of Lata Envirotech Services)

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC22532100000582F LES_CCL/EE/ME/SC/066 Calib. Field - Fluid Flow Page 1 (
Calibration Date	Certificate No. LES-CCL/FF/MF/SC/966				
Customer Name :-	03.02.2021		Date of Next Calibration	02.02.2022	
Address :-	M/s Prism Johnso (Cement Division: Village - Mankaha Tehsil - Rampur B (Madhya Pradesh)	: Unit - II) ri, P.O Bathia, Baghelan, Distt. Satna - 48	5111		
Reference :- S.R.F. No.	2020/929	Date :- 23.06.202	20 Date of Issue:-	06.02.2020	

01. DUC Fitted in instrument

Name	Make	Model	SI.No.	
Respirable Dust Sampler	Envirotech Instruments	APM -460 BL	1980 - DTC - 2011	-

02. Details of (DUC)

Name	Orifice Manometer Flow	Environmental Conditions During Calil	bration
Make	Envirotech Instruments	Temperature(°C)	
SI.No.	1980 - DTC - 2011	Relative Humidity (%)	25 ± 10
Cal. Range	0.6 -1.4 m ³ /min	Baromatric Pressure (mmHg)	45-75 745.10

03. Standard Equipment used for calibration

Standard Equipment Name	Range	SI.No./ID No.	Traceability	
Top Loading Orifice Calibrator	0.6 to 1.4 m ³ /min 57/LES-CCL/R/15304		LES-CCL, Gr. Noida	
Certificate No.	Cali. Date	Valie	Valid Up to 09.06.2021	
LES-CCL/FF/TLC/92	10.06.2020			
Calibration Procedure :- LES-0	CL/WI/31/EE/SC/08		2	

Remark : 1. Refer page 2 of 3 for Calibration Results and page 3 of 3 for Calibration Curve

2. The Flowrate has been Referenced to standard Temperature (20 °C) and Pressure (760 mmHg Absolute) Condition.

Notes :-


1. Reference used are directly traceable to national standard through

Authorized By

unbroken chain of calibration .

- 2. Results reported are valid at the time of and under the stated conditions of measurement
- 3. This Certificate refers only to the particular item calibrated.
- 4 .This certificate shall not be reproduced, except in full without the written

permisson of LES-CCL.Kasna, Greater Noida (U.P.)

ULR No.	CC2253210000	00582F	Page 2 of 3
Calibration Date	03.02.2021	Suggested Date of Next Calibration	
Certificate No.	LES-CCL/FF/MF/SC/9		02.02.2022

05. Calibration Results For Orifice Manometer Flow

S.No.	Test piece measured Indicated flow rate	icated flow rate flow rate in Calibration Curve		Expanded Uncertainty at 95 % of Confidence level (k =2)		
	(m³/min)	(m ³ /min)		± (m ³ /min)	(% Rdg)	
1	1.300	1.376	-5.523	0.035	2.52	
2	1.24	1.274	-2.669	0.032	2.52	
3	1.17	1.134	3.175	0.029	2.52	
4	0.93	0.886	4.966	0.029	2.52	
5	0.700	0.684	2.339	0.017	2.52	

(Curve Enclosed)

Uncertainty Contributing Factors :-

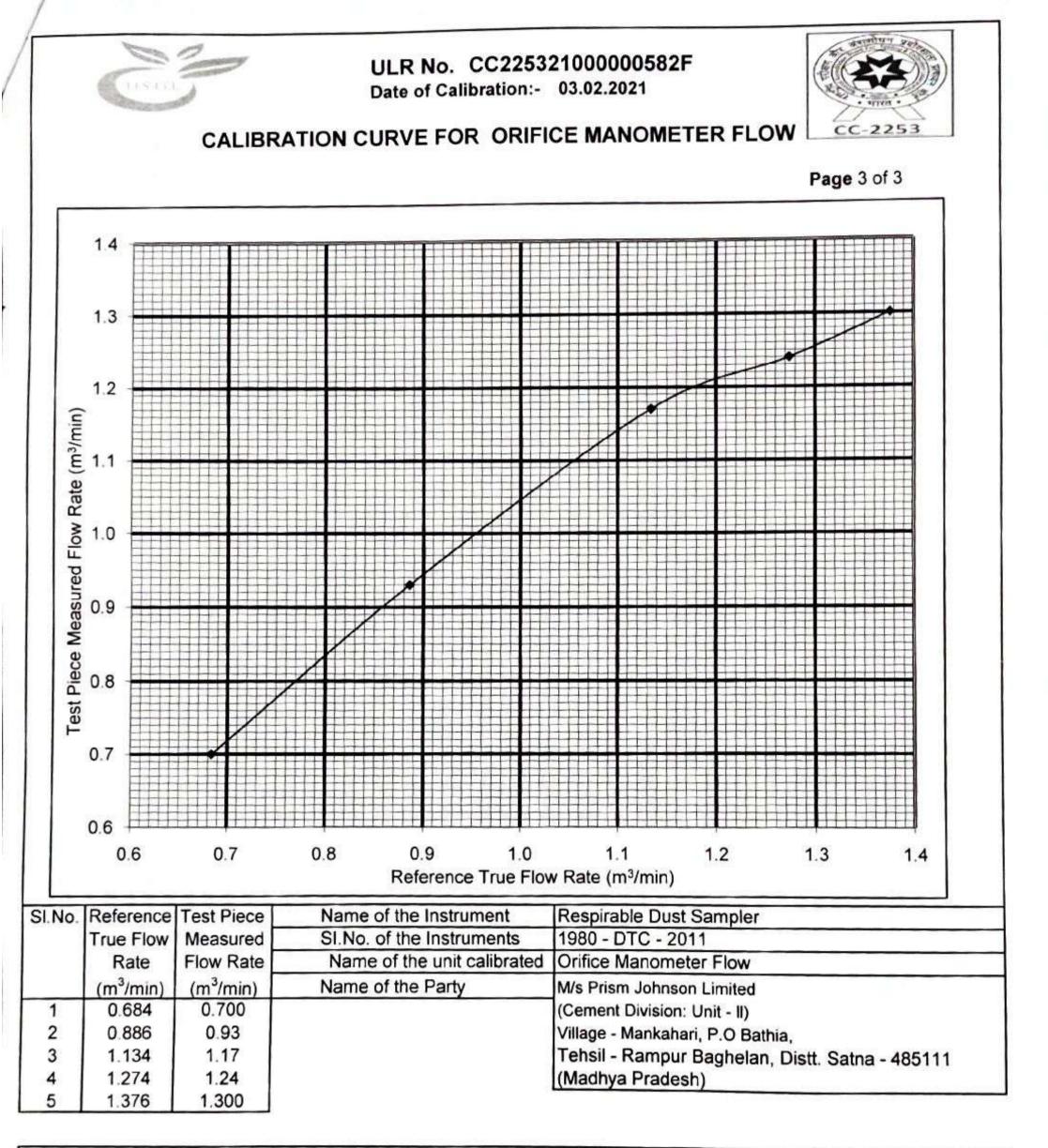
1. Repeatability (based on five measurements)

2. Uncertainty of master instruments used for Flow measurement

3. Uncertainty of master instruments used for Temp. Measurement (Temp.& RH Indicator)

4. Uncertainty of master instruments used for Atm. Pressure Measurement (Barometer)

5 Uncertainty due to resolution of DUC


The evaluated Expanded Uncertainty in calibration at a coverage

factor k = 2, for degrees of freedom = ... and C.L is 95 % for Normal distribution.

Calibration Place: Calibration done at M/s Prism Johnson Limited in workshop Tehsil - Rampur Baghelan, Distt. Satna ,(Madhya Pradesh)

1. Reference used are directly traceable to national standard through	Authorized By
unbroken chain of calibration	
 Results reported are valid at the time of and under the stated conditions of measurement This Certificate refers only to the particular item calibrated. 	Belle
 This certificate shall not be reproduced, except in full without the written permisson of LES-CCL Kasna, Greater Noida (U.P.) 	SHIVSHANKER SINGH
pormission of EEG-COE Rasha, Creater Holda (C.P.)	(Chief Executive Officer)

Notes :-

- Reference used are directly traceable to national standard through unbroken chain of calibration.
- Results reported are valid at the time of and under the stated conditions of measurement
- 3. This Certificate refers only to the particular item calibrated.
- This certificate shall not be reproduced, except in full without the written permisson of LES-CCL. Kasna, Greater Noida (U.P.)

Authorized By	_
Belle	
SHIVSHANKER SINGH	
(Chief Executive Officer)	

(A Division of Lata Envirotech Services)

K-307, UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.)

E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC225321000000583	Calib. Field - Electro-Technical	Page 1 of 1					
Certificate No.	LES-CCL/ET/TT/2107							
Calibration Date	05.02.2021	05.02.2021 Suggested Date of Next Calibration 04.02.2022						
Customer Name :-	M/s Prism Johnson Limited							
Address :-	(Cement Division: Unit - II)							
	Village - Mankahari, P.O Bathia,							
	Tehsil - Rampur Baghelan, Distt. Sa (Madhya Pradesh)	atna - 485111						
Reference :- S.R.F No	.: - 2020/929	Date: - 23.06.2020 Date of I	ssue:- 06.02.2021					

01. DUC Fitted in instrument

Name	Make	Model	SI.No.
Respirable Dust Sampler	Envirotech Instruments	APM -460 BL	1980 - DTC - 2011

02. Details of (DUC)

Name	Time Totalizer	Environmental Conditions During Calibra	
SI.No.	Т - 1980	Temperature (°C)	25 ± 3
		Relative Humidity (%)	45 - 75
		B. Pressure (mmHg)	746.60

03. Standard Equipment used for calibration

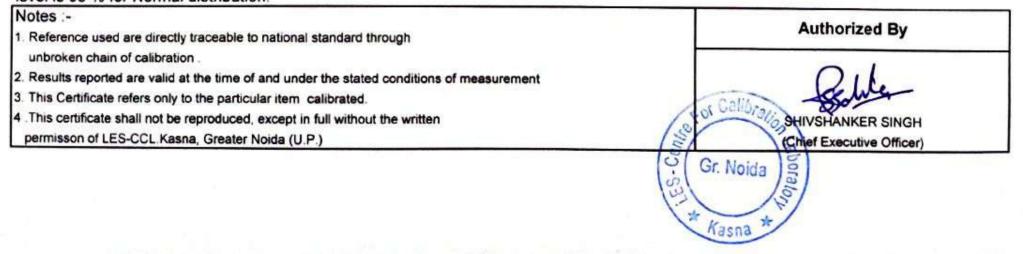
Standard Equipment Name	Range	SI.No./ID.No.	Traceability
Digital Automatic Timer	10 Sec - 4 hrs	LES-CCL/R/2507	CCTPL, Noida (U.P)
Calibration Certificate No.		Calibration Date	Valid Up to
CCTPL/TM/0170/01		30.10.2020	29.10.2021

04. Calibration Procedure LES-CCL/WI/31/ET/01

05. Calibration Results :

DUC has been calibrated for following Parameter (S) ranges (S)

S.No.	Displayed Value on DUC Hrs(Min)	Reference Time (Min)	Error (%)	Expanded Uncertainty at 95 % of Confidence level (k =2) (%)
1	0.25 (15.0 Min) (Final Readings of TTR at the end of Calibration: 3083.97 hrs)	15.0066	-0.04	± 3.329 %


Uncertainty Contributing Factor :-

1. Repeatability (based on five measurement)

2. Uncertainty of master instruments

3. Uncertainty due to resolution of DUC

The evaluated Expanded Uncertainty in calibration at a coverage factor k = 2, for degrees of freedom = ∞ and confidence level is 95 % for Normal distribution.

(A Division of Lata Envirotech Services)

K-307, UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.)

E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC225321000000581F	Callb Field Fleeter Technical	Page 1 of 1		
Certificate No.	LES-CCL/ET/TT/2106	Calib. Field - Electro-Technical			
Calibration Date	05.02.2021	Suggested Date of Next Calibration 04.02.2022			
Customer Name :-	M/s Prism Johnson Limited				
Address :-	(Cement Division: Unit - II)				
	Village - Mankahari, P.O Bathia,				
	Tehsil - Rampur Baghelan, Distt. Satna - 485111				
	(Madhya Pradesh)				
	TIN. 20193 92				
Reference :- S.R.F No	.: - 2020/929	Date: - 23.06.2020 Date of	Issue:- 06.02.2021		

01. DUC Fitted in instrument

Name	Make	Model	SI.No.
Respirable Dust Sampler	Envirotech Instruments	APM -460 BL	1977 - DTC - 2011

02. Details of (DUC)

Name	Time Totalizer	Environmental Conditions During Calil	
SI.No.	T - 1977	Temperature (°C)	25 ± 3
		Relative Humidity (%)	45 - 75
		B. Pressure (mmHg)	746.60

03. Standard Equipment used for calibration

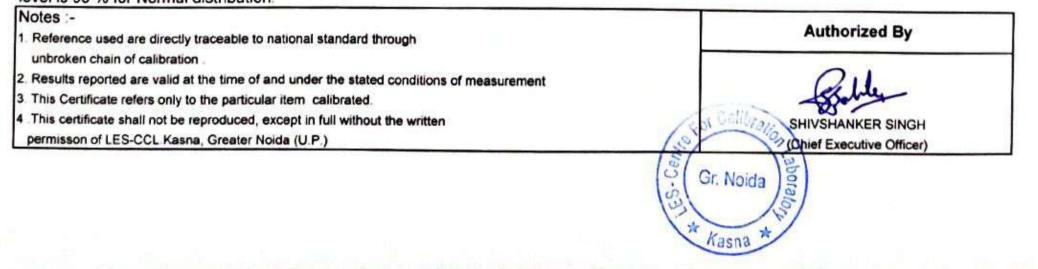
Standard Equipment Name	Range	SI.No./ID.No.	Traceability
Digital Automatic Timer	10 Sec - 4 hrs	LES-CCL/R/2507	CCTPL, Noida (U.P)
Calibration Certificate No.		Calibration Date	Valid Up to
CCTPL/TM/0170/	01	30.10.2020	29.10.2021

04. Calibration Procedure LES-CCL/WI/31/ET/01

05. Calibration Results :

DUC has been calibrated for following Parameter (S) ranges (S)

S.No.	Displayed Value on DUC Hrs(Min)	Reference Time (Min)	Error (%)	Expanded Uncertainty at 95 % of Confidence level (k =2) (%)
1	0.25 (15.0 Min) (Final Readings of TTR at the end of Calibration: 1619.90 hrs)	15.0066	-0.04	± 3.329 %


Uncertainty Contributing Factor :-

1. Repeatability (based on five measurement)

2. Uncertainty of master instruments

3. Uncertainty due to resolution of DUC

The evaluated Expanded Uncertainty in calibration at a coverage factor k = 2, for degrees of freedom = ∞ and confidence level is 95 % for Normal distribution.

(A Division of Lata Envirotech Services)

K-307, UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.) E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC225321000	0000580F	Calib. Field - Fluid Flow	Page 1 of 3
Certificate No.	LES-CCL/FF/MF/SC	2/965	Callb. Tield - Tidld Tiow	ragerors
Calibration Date	03.02.2021	Suggester	Date of Next Calibration	02.02.2022
Customer Name :- Address :-	M/s Prism Johnson (Cement Division: Village - Mankahari Tehsil - Rampur Ba (Madhya Pradesh)	Unit - II)	85111	
Reference :- S.R.F. No.	2020/929	Date :- 23.06.2	Date of Issue:-	06.02.2020

01. DUC Fitted in instrument

Name	Make	Model	SI.No.	
Respirable Dust Sampler	Envirotech Instruments	APM -460 BL	1977 - DTC - 2011	

02. Details of (DUC)

Name	Orifice Manometer Flow	Environmental Conditions During Calib	oration
Make	Envirotech Instruments	Temperature(°C)	25 ± 10
SI.No.	1977 - DTC - 2011	Relative Humidity (%)	45-75
Cal. Range	0.6 -1.4 m ³ /min	Baromatric Pressure (mmHg)	745.10

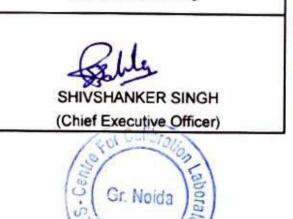
03. Standard Equipment used for calibration

Range SI.No./ID No.		Traceability	
0.6 to 1.4 m ³ /min	57/LES-CCL/R/15304	LES-CCL, Gr. Noida	
Cali. Date	Val	Valid Up to	
10.06.2020 09.0		6.2021	
	0.6 to 1.4 m ³ /min Cali. Date	0.6 to 1.4 m ³ /min 57/LES-CCL/R/15304 Cali. Date Vali	

Remark : 1. Refer page 2 of 3 for Calibration Results and page 3 of 3 for Calibration Curve

2. The Flowrate has been Referenced to standard Temperature (20 °C) and Pressure (760 mmHg Absolute) Condition.

Notes :-


1. Reference used are directly traceable to national standard through

Authorized By

unbroken chain of calibration .

- 2. Results reported are valid at the time of and under the stated conditions of measurement
- This Certificate refers only to the particular item calibrated.
- 4 .This certificate shall not be reproduced, except in full without the written

permisson of LES-CCL Kasna, Greater Noida (U.P.)

lasna

ULR No.	CC22532100000)580F	Page 2 of 2
Calibration Date	03.02.2021		Page 2 of 3
Certificate No.	LES-CCL/FF/MF/SC/965	Suggested Date of Next Calibration	02.02.2022

05. Calibration Results For Orifice Manometer Flow

5.NO.	I est piece measured Indicated flow rate (m ³ /min)	· 3. · · ·		Expanded Uncertainty at 95 % of Confidence level (k =2)	
	(/)	(m ³ /min)		± (m³/min)	(% Rdg)
1	1.210	1.208	0.166	0.030	2.52
2	1.14	1.144	-0.350	0.029	2.52
3	1.10	1.084	1.476	0.027	2.52
4	1.02	0.974	4.723	0.027	2.52
5	0.740	0.724	2.210	0.018	2.52

(Curve Enclosed)

Uncertainty Contributing Factors :-

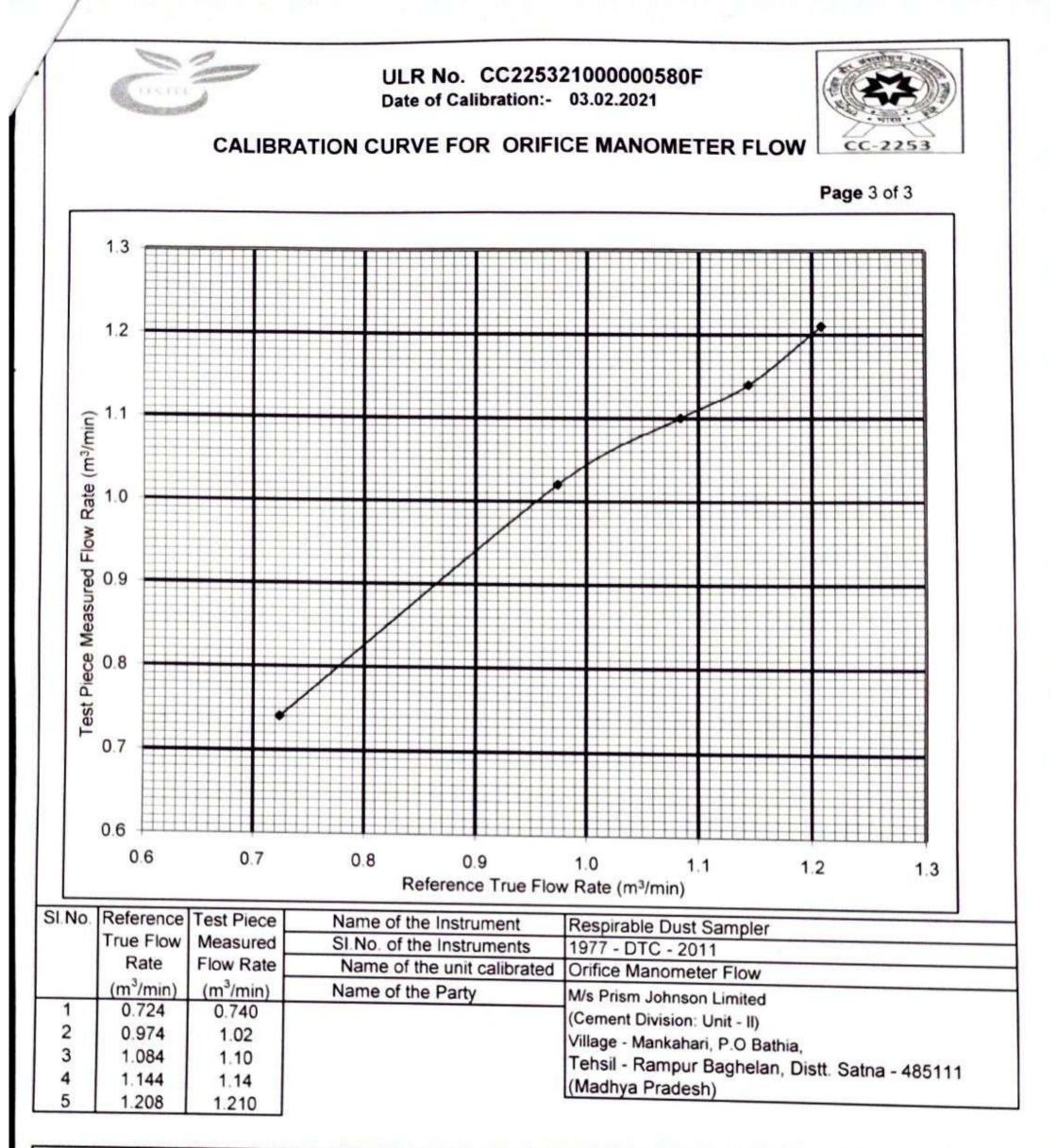
1. Repeatability (based on five measurements)

2 Uncertainty of master instruments used for Flow measurement

3 Uncertainty of master instruments used for Temp.Measurement (Temp.& RH Indicator)

4. Uncertainty of master instruments used for Atm Pressure Measurement (Barometer)

5. Uncertainty due to resolution of DUC


The evaluated Expanded Uncertainty in calibration at a coverage

factor k = 2, for degrees of freedom == and C.L is 95 % for Normal distribution.

Calibration Place: Calibration done at M/s Prism Johnson Limited in workshop Tehsil - Rampur Baghelan, Distt. Satna ,(Madhya Pradesh)

Notes :- 1. Reference used are directly traceable to national standard through	Authorized By
unbroken chain of calibration . 2. Results reported are valid at the time of and under the stated conditions of measurement	
3. This Certificate refers only to the particular item calibrated.	Relie
4 This certificate shall not be reproduced, except in full without the written	SHIVSHANKER SINGH
permisson of LES-CCL Kasna, Greater Noida (U.P.)	(Chief Executive Officer)
	100 V - Marin

Notes :-

- Reference used are directly traceable to national standard through unbroken chain of calibration.
- Results reported are valid at the time of and under the stated conditions of measurement
- 3. This Certificate refers only to the particular item calibrated.
- This certificate shall not be reproduced, except in full without the written permisson of LES-CCL. Kasna, Greater Noida (U.P.)

_	Authorized By	
	Selles	
	SHIVSHANKER SINGH (Chief Executive Officer)	
	Gr. Noida	5
	Kasna *	

(A Division of Lata Envirotech Services)

K-307, UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.)

E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC225321000000579F		
Certificate No.	LES-CCL/ET/TT/2105	Calib. Field - Electro-Technical	cal Page 1 of 1
Calibration Date 05.02.2021 Suggested Date of Next Calibratio			
Customer Name :-	M/s Prism Johnson Limited		
Address :-	(Cement Division: Unit - II)		
	Village - Mankahari, P.O Bathia,		
	Tehsil - Rampur Baghelan, Distt. Sa	itna - 485111	
	(Madhya Pradesh)		

01. DUC Fitted in instrument

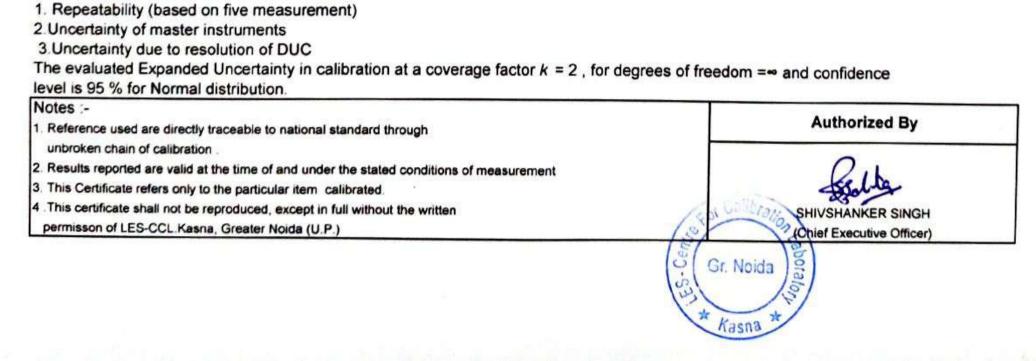
Name	Make	Model	SI.No.
Respirable Dust Sampler	Envirotech Instruments	APM -460 BL	1981 - DTC - 2011

02. Details of (DUC)

Name	Time Totalizer	Environmental Conditions During Calibratio	
SI.No.	T - 1981	Temperature (°C) 25	
		Relative Humidity (%)	45 - 75
		B. Pressure (mmHg)	746.60

03. Standard Equipment used for calibration

Standard Equipment Name Range		rd Equipment Name Range SI.No./ID.No.	
Digital Automatic Timer	10 Sec - 4 hrs	LES-CCL/R/2507	CCTPL, Noida (U.P)
Calibration Certificate No.		Calibration Date	Valid Up to
CCTPL/TM/0170/	01	30.10.2020	29.10.2021


04. Calibration Procedure LES-CCL/WI/31/ET/01

05. Calibration Results :

DUC has been calibrated for following Parameter (S) ranges (S)

S.No.	Displayed Value on DUC Hrs(Min)	Reference Time (Min)	Error (%)	Expanded Uncertainty at 95 % of Confidence level (k =2) (%)
1	0.25 (15.0 Min) (Final Readings of TTR at the end of Calibration: 1742.58 hrs)	15.0076	-0.05	± 3.329 %

Uncertainty Contributing Factor :-

(A Division of Lata Envirotech Services)

K-307, UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.)

E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC225321000	0000578F	Calib. Field - Fluid Flow	Page 1 of 3
Certificate No.	LES-CCL/FF/MF/SC	LES-CCL/FF/MF/SC/963		
Calibration Date	03.02.2021	02.02.2022		
Customer Name :- Address :-	M/s Prism Johnson (Cement Division: I Village - Mankahari Tehsil - Rampur Ba (Madhya Pradesh)	Unit - II)	5111	
Reference :- S.R.F. No.	2020/929	Date :- 23.06.20	20 Date of Issue:-	06.02.2020

01. DUC Fitted in instrument

Name	Make	Model	SI.No.	
Respirable Dust Sampler	Envirotech Instruments	APM -460 BL	1981 - DTC - 2011	

02. Details of (DUC)

Name	Orifice Manometer Flow	Environmental Conditions During Calibration	
Make	Envirotech Instruments	Temperature(°C)	25 ± 10
SI.No.	1981 - DTC - 2011	Relative Humidity (%)	45-75
Cal. Range	0.6 -1.4 m ³ /min	Baromatric Pressure (mmHg)	745.10

03. Standard Equipment used for calibration

Standard Equipment Name	Range SI.No./ID No.		Traceability
Top Loading Orifice Calibrator	0.6 to 1.4 m ³ /min	57/LES-CCL/R/15304	LES-CCL, Gr. Noida
Certificate No.	Cali. Date	Vali	d Up to
LES-CCL/FF/TLC/92	10.06.2020	09.0	6.2021

Remark : 1. Refer page 2 of 3 for Calibration Results and page 3 of 3 for Calibration Curve

2. The Flowrate has been Referenced to standard Temperature (20 °C) and Pressure (760 mmHg Absolute) Condition.

Notes :-

1. Reference used are directly traceable to national standard through

Authorized By

Thereference used are directly traceable to flational standard through

unbroken chain of calibration .

- 2. Results reported are valid at the time of and under the stated conditions of measurement
- 3. This Certificate refers only to the particular item calibrated.
- 4 This certificate shall not be reproduced, except in full without the written

permisson of LES-CCL Kasna, Greater Noida (U.P.)

ULR No.	CC2253210000	00578F	Page 2 of 3
Calibration Date	03.02.2021	Suggested Date of Next Calibration	02.02.2022
Certificate No.	LES-CCL/FF/MF/SC/9		

05. Calibration Results For Orifice Manometer Flow

S.No.	S.No. Test piece measured Indicated flow rate	licated flow rate flow rate in Calibration Curve		Expanded Uncertainty at 95 % of Confidence level (k =2)	
	(m ³ /min)	(m³/min)		± (m³/min)	(% Rdg)
1	1.250	1.204	3.821	0.030	2.52
2	1.16	1.156	0.346	0.029	2.52
3	1.06	1.034	2.515	0.026	2.52
4	0.94	0.936	0.427	0.026	2.52
5	0.750	0.726	3.306	0.018	2.52

(Curve Enclosed)

Uncertainty Contributing Factors :-

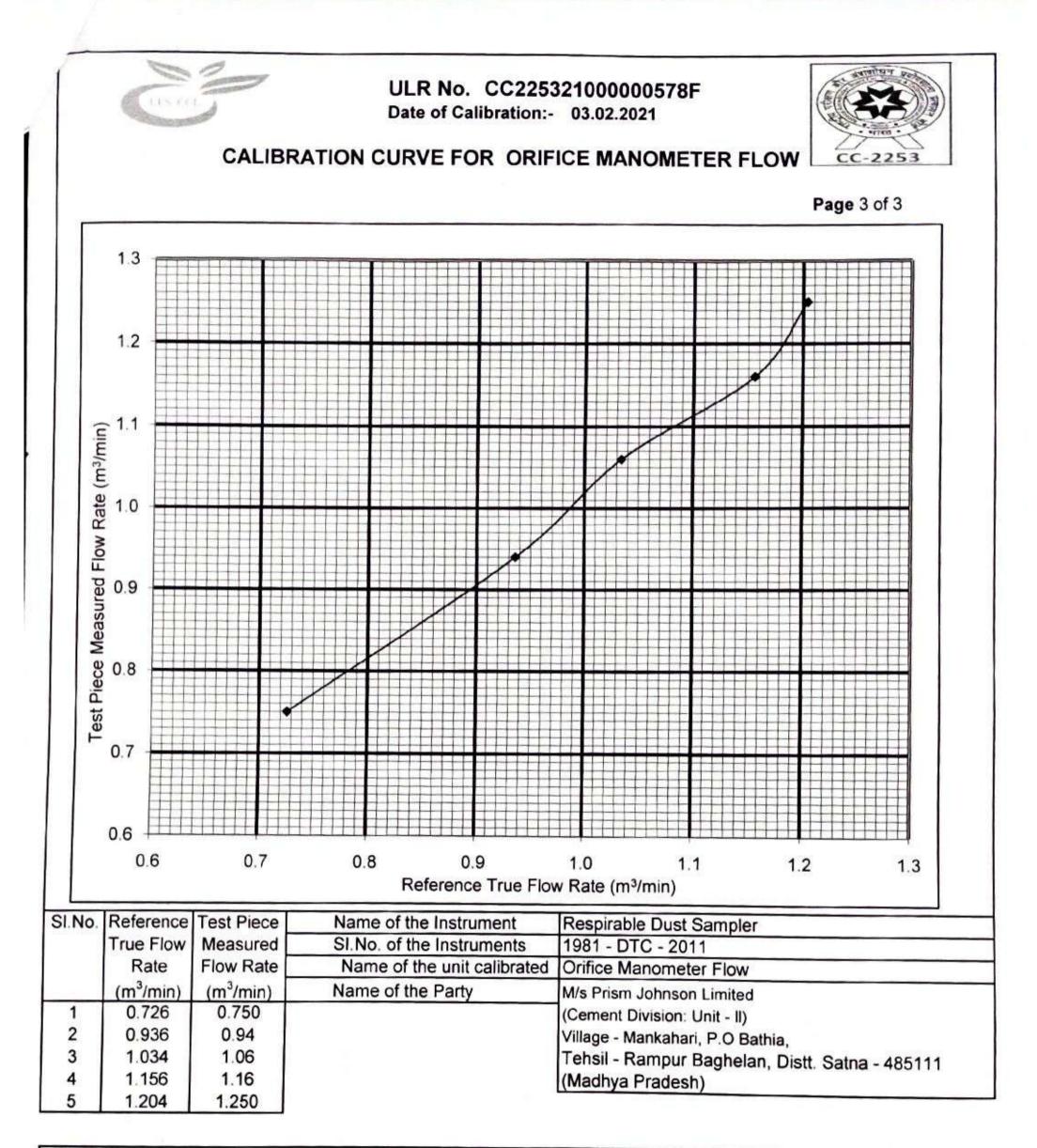
1. Repeatability (based on five measurements)

2. Uncertainty of master instruments used for Flow measurement

3. Uncertainty of master instruments used for Temp. Measurement (Temp.& RH Indicator)

4. Uncertainty of master instruments used for Atm. Pressure Measurement (Barometer)

5. Uncertainty due to resolution of DUC


The evaluated Expanded Uncertainty in calibration at a coverage

factor k = 2, for degrees of freedom = ond C.L is 95 % for Normal distribution.

Calibration Place: Calibration done at M/s Prism Johnson Limited in workshop Tehsil - Rampur Baghelan, Distt. Satna ,(Madhya Pradesh)

Notes :-	
1. Reference used are directly traceable to national standard through	Authorized By
unbroken chain of calibration .	
2. Results reported are valid at the time of and under the stated conditions of measurement	\bigcirc
This Certificate refers only to the particular item calibrated.	Sealler
4 .This certificate shall not be reproduced, except in full without the written	SHIVSHANKER SINGH
permisson of LES-CCL.Kasna, Greater Noida (U.P.)	(Chief Executive Officer)

Gr. Noida

Notes :-

- Reference used are directly traceable to national standard through unbroken chain of calibration.
- Results reported are valid at the time of and under the stated conditions of measurement
- 3. This Certificate refers only to the particular item calibrated.
- This certificate shall not be reproduced, except in full without the written permisson of LES-CCL. Kasna, Greater Noida (U.P.)

	Salily
80	SHIVSHANKER SINGH
	(Chief Executive Officer)

Gr. Noida

(A Division of Lata Envirotech Services)

K-307,UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.) E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC225321000000577F	Calib. Field - Electro-Technical	Page 1 of 1		
Certificate No.	LES-CCL/ET/TT/2104	Calib. Field - Electro-reclinical			
Calibration Date	on Date 05.02.2021 Suggested Date of Next Calibration		04.02.2022		
Customer Name :-	M/s Prism Johnson Limited				
Address :-	(Cement Division: Unit - II) Village - Mankahari, P.O Bathia,				
	Tehsil - Rampur Baghelan, Distt. Satna - 485111 (Madhya Pradesh)				
Reference :- S.R.F No	.: - 2020/929	Date: - 23.06.2020 Date of	ssue:- 06.02.2021		

01. DUC Fitted in instrument

Name	Make	Model	SI.No.	
Respirable Dust Sampler	Envirotech Instruments	APM -460 BL	1976 - DTC - 2011	

02. Details of (DUC)

Name	Time Totalizer	Environmental Conditions During Calibrat	
SI.No. T - 1976	T - 1976	Temperature (°C)	25 ± 3
		Relative Humidity (%)	45 - 75
		B. Pressure (mmHg)	746.60

03. Standard Equipment used for calibration

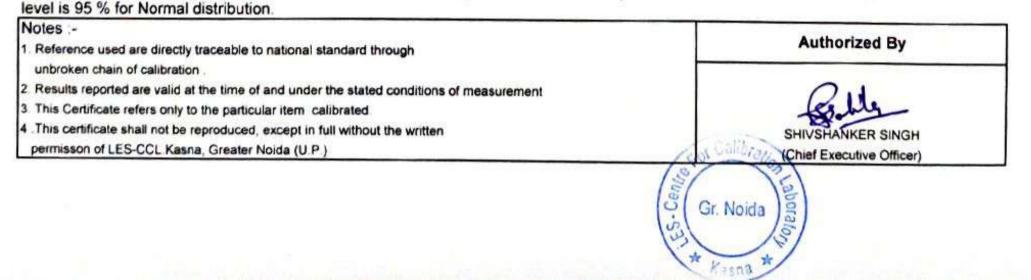
Standard Equipment Name	Range	SI.No./ID.No.	Traceability
Digital Automatic Timer	10 Sec - 4 hrs	LES-CCL/R/2507	CCTPL, Noida (U.P)
Calibration Certificate No.		Calibration Date	Valid Up to
CCTPL/TM/0170/01		30 10 2020	29.10.2021

04. Calibration Procedure LES-CCL/WI/31/ET/01

05. Calibration Results :

DUC has been calibrated for following Parameter (S) ranges (S)

S.No.	Displayed Value on DUC Hrs(Min)	Reference Time (Min)	Error (%)	Expanded Uncertainty at 95 % of Confidence level (k =2) (%)
1	0.25 (15.0 Min) (Final Readings of TTR at the end of Calibration: 2087.51 hrs)	15.0066	-0.04	± 3.33 %


Uncertainty Contributing Factor :-

1. Repeatability (based on five measurement)

2 Uncertainty of master instruments

3 Uncertainty due to resolution of DUC

The evaluated Expanded Uncertainty in calibration at a coverage factor k = 2, for degrees of freedom == and confidence

(A Division of Lata Envirotech Services)

K-307, UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.) E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC22532100	0000576F		
Certificate No.	LES-CCL/FF/MF/SC/963		Calib. Field - Fluid Flow	Page 1 of 3
Calibration Date	03.02.2021	00.00.0001		02.02.2022
Customer Name :- Address :-	M/s Prism Johnso (Cement Division Village - Mankaha Tehsil - Rampur E (Madhya Pradesh	: Unit - II) ri, P.O Bathia, Baghelan, Distt. Satna -	485111	
Reference :- S.R.F. No.	2020/929	Date :- 23.06.	2020 Date of Issue:-	06 02 2020

01. DUC Fitted in instrument

Name	Make	Model	SI.No.	
Respirable Dust Sampler	Envirotech Instruments	APM -460 BL	1976 - DTC - 2011	

02. Details of (DUC)

Name	Orifice Manometer Flow	Environmental Conditions During Calil	bration
Make	Envirotech Instruments	Temperature(°C)	25 ± 10
SI.No.	1976 - DTC - 2011	Relative Humidity (%)	45-75
Cal. Range	0.6 -1.4 m ³ /min	Baromatric Pressure (mmHg)	745.10

03. Standard Equipment used for calibration

Standard Equipment Name	Range	SI.No./ID No.	Traceability	
Top Loading Orifice Calibrator	0.6 to 1.4 m ³ /min	57/LES-CCL/R/15304	LES-CCL, Gr. Noida	
Certificate No.	Cali. Date Valid Up to 10.06.2020 09.06.2021		CONTRACTOR AND	
LES-CCL/FF/TLC/92				
Calibration Procedure :- LES-0			0.2021	

Remark : 1. Refer page 2 of 3 for Calibration Results and page 3 of 3 for Calibration Curve

2. The Flowrate has been Referenced to standard Temperature (20 *C) and Pressure (760 mmHg Absolute) Condition.

Notes :-

1. Reference used are directly traceable to national standard through unbroken chain of calibration .

- 2. Results reported are valid at the time of and under the stated conditions of measurement
- 3. This Certificate refers only to the particular item calibrated.
- 4 This certificate shall not be reproduced, except in full without the written

permisson of LES-CCL Kasna, Greater Noida (U.P.)

Kasna

ULR No.	CC22532100000576F 03.02.2021 Suggested Date of Next Calibration		CC22532100000576F		Page 2 of 3
Calibration Date			02.02.2022		
Certificate No.	LES-CCL/FF/MF/SC/9				

05. Calibration Results For Orifice Manometer Flow

S.No.	Test piece measured Indicated flow rate		Error % (Rdg)	Expanded Uncertainty at 95 % of Confidence level (k =2)	
	(m ³ /min)			± (m³/min)	(% Rdg)
1	1.250	1.204	3.821	0.030	2.52
2	1.16	1.156	0.346	0.029	2.52
3	1.06	1.034	2.515	0.026	2.52
4	0.94	0.936	0.427	0.026	2.52
5	0.750	0.726	3.306	0.018	2 52

(Curve Enclosed)

Uncertainty Contributing Factors :-

1. Repeatability (based on five measurements)

2 Uncertainty of master instruments used for Flow measurement

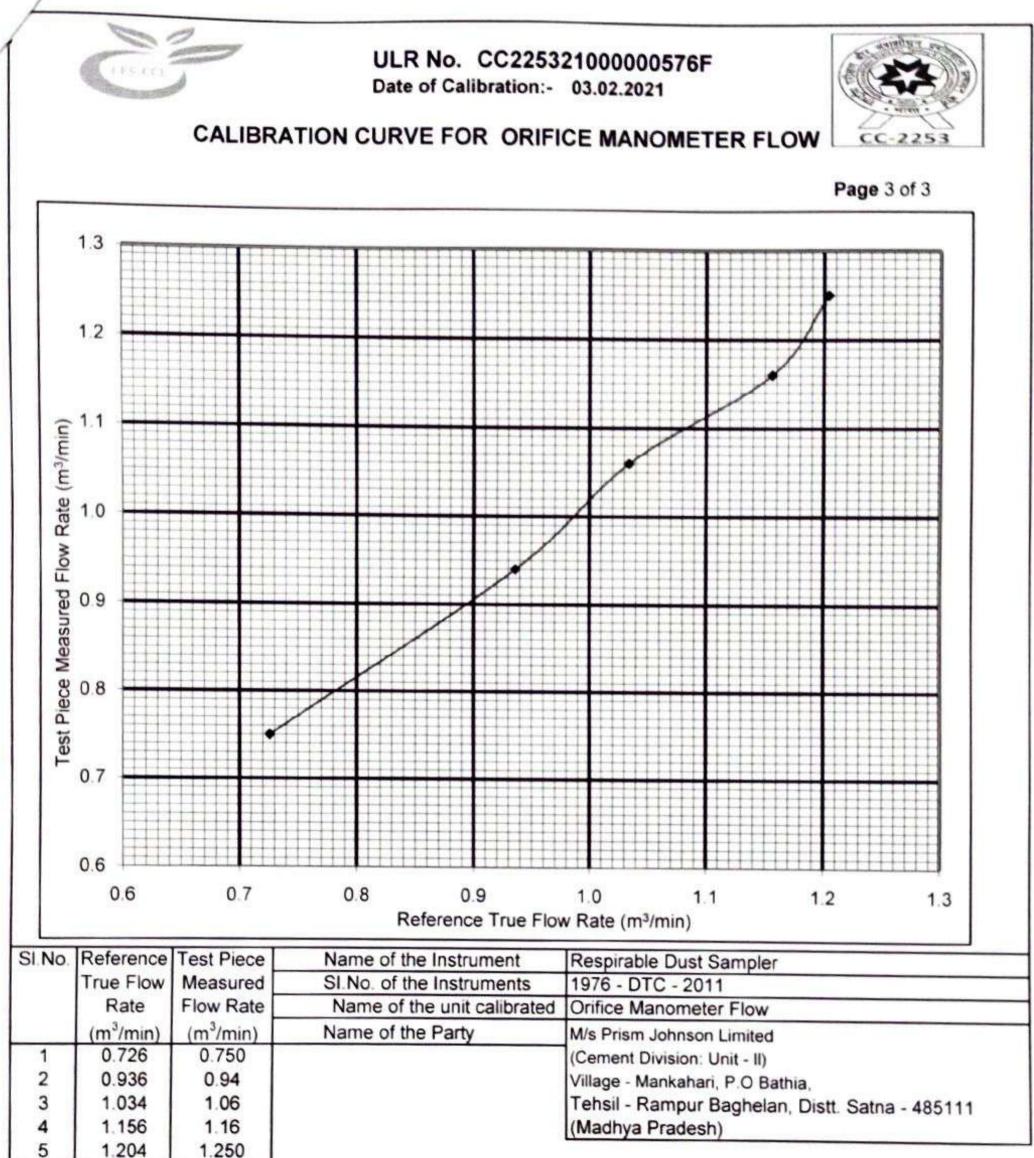
3 Uncertainty of master instruments used for Temp Measurement (Temp & RH Indicator)

4 Uncertainty of master instruments used for Atm Pressure Measurement (Barometer)

5 Uncertainty due to resolution of DUC

The evaluated Expanded Uncertainty in calibration at a coverage

factor k = 2, for degrees of freedom == and C.L is 95 % for Normal distribution.


Calibration Place: Calibration done at M/s Prism Johnson Limited in workshop Tehsil - Rampur Baghelan, Distt. Satna ,(Madhya Pradesh)

Notes :-	
Reference used are directly traceable to national standard through	Authorized By
unbroken chain of calibration	
Results reported are valid at the time of and under the stated conditions of measurement	OIL
This Certificate refers only to the particular item calibrated.	Belle
4 This certificate shall not be reproduced, except in full without the written	SHIVSHANKER SINGH
permisson of LES-CCL.Kasna, Greater Noida (U.P.)	(Chief Executive Officer)

Gr. Noida 13578

101

Notes :-	Authorized By
 Reference used are directly traceable to national standard through unbroken chain of calibration 	Authorized By
2. Results reported are valid at the time of and under the stated conditions	
of measurement	
This Certificate refers only to the particular item calibrated.	Sella
This certificate shall not be reproduced, except in full without the written	SHIVSHANKER SINGH
permisson of LES-CCL. Kasna, Greater Noida (U.P.)	(Chief Executive Officer)

(A Division of Lata Envirotech Services)

K-307, UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.) E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC225321000000584F		Calib. Field - Fluid Flow	Page 1 of 3	
Certificate No.	LES-CCL/FF/MF/SC/962		allo, Fleid - Fluid Flow		
Calibration Date	03.02.2021 Suggested Date of Next Calibration		02.02.2022		
Customer Name :- Address :-	(Cement Division: Village - Mankahari	M/s Prism Johnson Limited (Cement Division: Unit - II) Village - Mankahari, P.O Bathia, Tehsil - Rampur Baghelan, Distt. Satna - 485111			
Reference :- S.R.F. No.	2020/929	Date :- 23.06.202	0 Date of Issue:-	06.02.2020	

01. DUC Fitted in instrument

Name	Make	Model	SI.No.	
Respirable Dust Sampler	Envirotech Instruments	APM -460 BL	900 - DATE - C - 2000	

02. Details of (DUC)

Name	Orifice Manometer Flow	Environmental Conditions During Calibration		
Make	Envirotech Instruments	Temperature(°C)	25 ± 10	
SI.No.	900 - DATE - C - 2000	Relative Humidity (%)	45-75	
Cal. Range	0.6 -1.4 m ³ /min	Baromatric Pressure (mmHg)	745.10	

03. Standard Equipment used for calibration

Standard Equipment Name	Range	SI.No./ID No.	Traceability	
Top Loading Orifice Calibrator	0.6 to 1.4 m ³ /min 57/LES-CCL/R/15304		LES-CCL, Gr. Noida	
Certificate No.	Cali. Date	Vali	Valid Up to 09.06.2021	
LES-CCL/FF/TLC/92	10.06.2020	09.0		
Calibration Procedure :- LES-0	CCL/WI/31/FF/SC/08			

Remark : 1. Refer page 2 of 3 for Calibration Results and page 3 of 3 for Calibration Curve

2. The Flowrate has been Referenced to standard Temperature (20 °C) and Pressure (760 mmHg Absolute) Condition.

Notes :-

Authorized By

1. Reference used are directly traceable to national standard through unbroken chain of calibration .

- 2. Results reported are valid at the time of and under the stated conditions of measurement
- 3. This Certificate refers only to the particular item calibrated.
- 4 This certificate shall not be reproduced, except in full without the written

permisson of LES-CCL Kasna, Greater Noida (U.P.)

ULR No.	o. CC22532100000584F		Page 2 of 3	
Calibration Date	03.02.2021	Suggested Date of Next Calibration	-	
Certificate No.	LES-CCL/FF/MF/SC/9		02.02.2022	

05. Calibration Results For Orifice Manometer Flow

S.No.	Test piece measured Indicated flow rate	ndicated flow rate flow rate in Calibration Curve		Expanded Uncertainty at 95 % of Confidence level (k =2)	
	(m³/min)	(m ³ /min)		± (m ³ /min)	(% Rdg)
1	1.220	1.192	2.349	0.030	2.52
2	1.16	1.130	2.655	0.028	2.52
3	1.08	1.026	5.263	0.026	2.52
4	0.95	0.934	1.713	0.026	2.52
5	0.775	0.744	4.167	0.019	2.52

(Curve Enclosed)

Uncertainty Contributing Factors :-

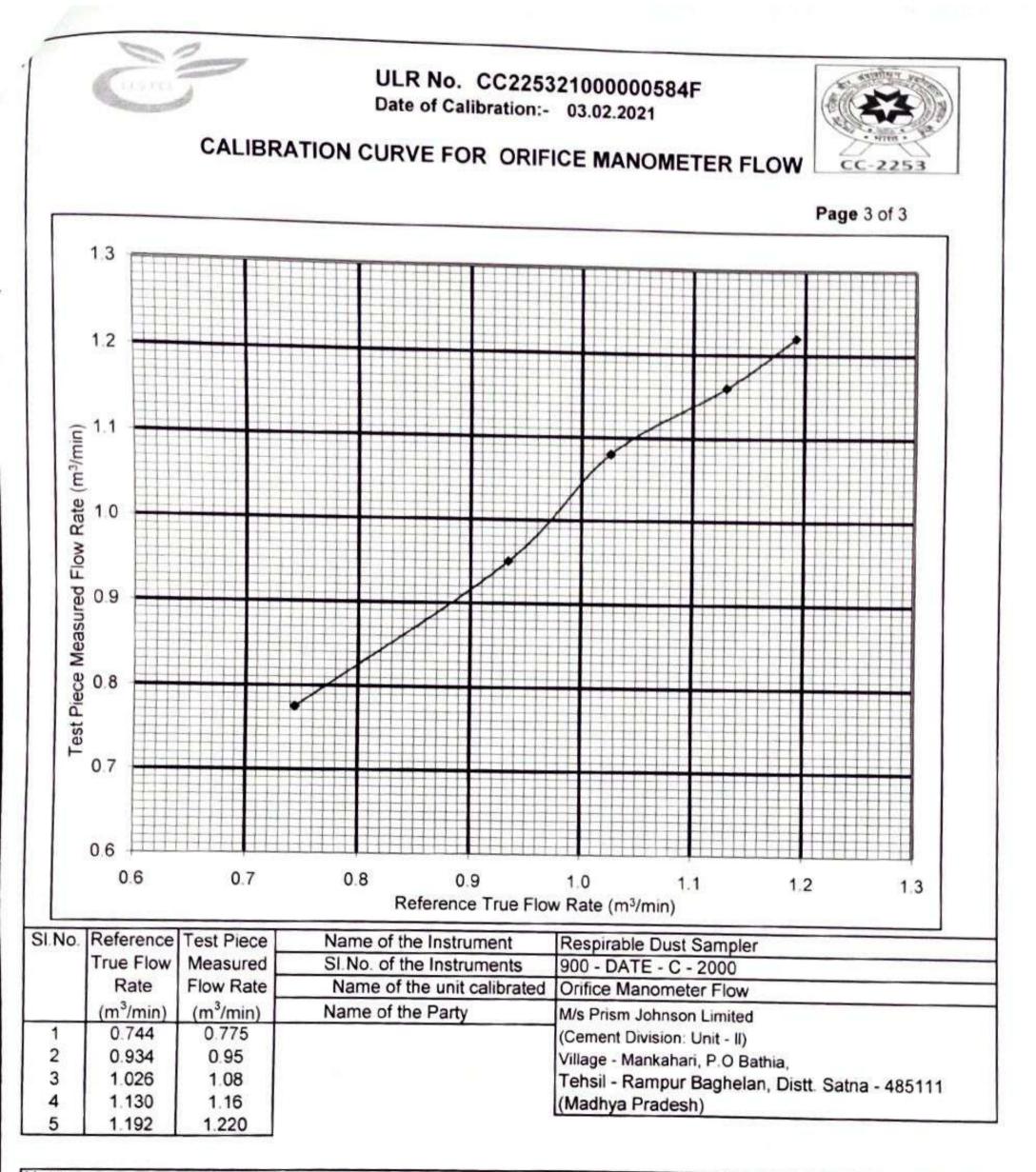
1. Repeatability (based on five measurements)

2. Uncertainty of master instruments used for Flow measurement

3. Uncertainty of master instruments used for Temp Measurement (Temp & RH Indicator)

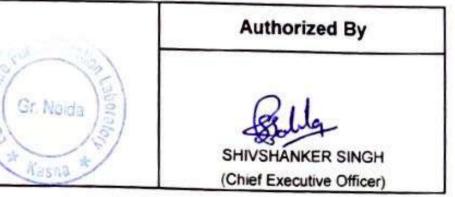
4. Uncertainty of master instruments used for Atm. Pressure Measurement (Barometer)

5 Uncertainty due to resolution of DUC


The evaluated Expanded Uncertainty in calibration at a coverage

factor k = 2 , for degrees of freedom =∞ and C L is 95 % for Normal distribution.

Calibration Place: Calibration done at M/s Prism Johnson Limited in workshop Tehsil - Rampur Baghelan, Distt. Satna (Madhya Pradesh)


1. Reference used are directly traceable to national standard through	Authorized By
unbroken chain of calibration	
2. Results reported are valid at the time of and under the stated conditions of measurement	0.1
3. This Certificate refers only to the particular item calibrated.	Salita
This certificate shall not be reproduced, except in full without the written	SHIVSHANKER SINGH
permisson of LES-CCL Kasna, Greater Noida (U.P.)	(Chief Executive Officer)

Notes :-

- Reference used are directly traceable to national standard through unbroken chain of calibration.
- Results reported are valid at the time of and under the stated conditions of measurement
- 3. This Certificate refers only to the particular item calibrated.
- This certificate shall not be reproduced, except in full without the written permisson of LES-CCL. Kasna, Greater Noida (U.P.)

(A Division of Lata Envirotech Services)

K-307, UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.)

E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC225321000000585F	Calib. Field - Electro-Technical	Page 1 of 1		
Certificate No.	LES-CCL/ET/TT/2103	Calib. Field - Electro-Technical	Fageron		
Calibration Date	05 02 2021	04.02.2022			
Customer Name :-	M/s Prism Johnson Limited				
Address :-	(Cement Division: Unit - II)				
	Village - Mankahari, P.O Bathia,				
	Tehsil - Rampur Baghelan, Distt. Satna - 485111				
	(Madhya Pradesh)				
Reference :- S.R.F No	.: - 2020/929	Date: - 23.06.2020 Date of	Issue:- 06.02.2021		

01. DUC Fitted in instrument

Name	Make	Model	SI.No.
Respirable Dust Sampler	Envirotech Instruments	APM -460 BL	900 - DATE - C - 2000

02. Details of (DUC)

Name	Time Totalizer	Environmental Conditions During Calibrat	
SI.No.	T - 900	Temperature (°C)	25 ± 3
		Relative Humidity (%)	45 - 75
		B. Pressure (mmHg)	745.60

03. Standard Equipment used for calibration

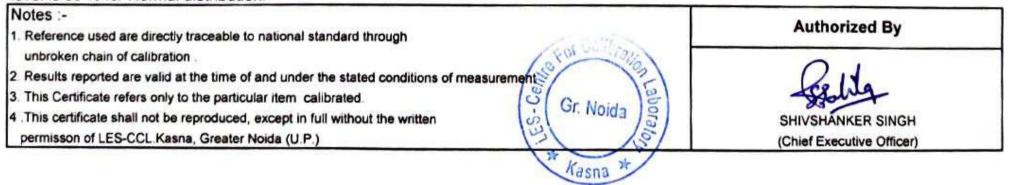
Standard Equipment Name	dard Equipment Name Range SI.No./ID.No.	Traceability	
Digital Automatic Timer	10 Sec - 4 hrs	LES-CCL/R/2507	CCTPL, Noida (U.P)
Calibration Certification	te No.	Calibration Date	Valid Up to
CCTPL/TM/0170/	01	30.10.2020	29.10.2021

04. Calibration Procedure LES-CCL/WI/31/ET/01

05. Calibration Results :

DUC has been calibrated for following Parameter (S) ranges (S)

S.No.	Displayed Value on DUC Hrs(Min)	Reference Time (Min)	Error (%)	Expanded Uncertainty at 95 % of Confidence level (k =2) (%)
1	0.25 (15.0 Min) (Final Readings of TTR at the end of Calibration: 184.70 hrs)	15.0074	-0.05	± 3.329 %


Uncertainty Contributing Factor :-

1. Repeatability (based on five measurement)

2. Uncertainty of master instruments

3 Uncertainty due to resolution of DUC

The evaluated Expanded Uncertainty in calibration at a coverage factor k = 2, for degrees of freedom =•• and confidence level is 95 % for Normal distribution.

(A Division of Lata Envirotech Services)

K-307, UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.) E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC2253210	22532100000568F Calibration Field -		Page 1 of 1
Certificate No. LES-CCL/MECH/S	/SLM/289	LM/289 Mechanical		
Calibration Date	05.02.2020	Suggested Date of Next Calibration		04.02.2022
Customer Name :- Address :-	M/s Prism Johns (Cement Divisio Village - Mankat Tehsil - Rampur (Madhya Prades	n: Unit - II) nari, P.O Bathia, Baghelan, Distt. Satna -	485111	
Reference :- S.R.F. No	2020/1065	Date :- 26.11.2020	Date of Iss	ue: - 28.11.2020

01. Details of (DUC)

Name	Sound Level Meter Environmental Condition of During C		Calibration
Make / Model	Lutron / 2001	Temperature (°C)	25 ± 3
SI.No.	A0905 - 276	Relative Humidity (%)	45 - 75
Range	30 - 130 dB	Baromatric Pressure (mmHg)	746.45

02. Standard Equipment used for calibration

Standard Equipment Name	Range		Traceability
Sound Level Calibrator	94 dB, 114 dB	I.164109	IDEMI, MUMBAI
Certificate No.	Calibratio	n Date	Valid Up to
CC/ECL/0835/20-21	09.11.2	020	NM

03. Calibration Procedure :-LES-CCL/WI/31/MECH/03

04. Calibration Results :

DUC has been calibrated for following Parameter (S) ranges (S)

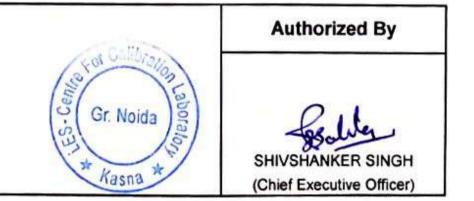
S.No.	Displayed Value on DUC (dB)	Reference Value (dB)	Error (%Rdg)	Expanded Uncertainty at 95 % of Confidence level (k =2)
1	93.4	94.6	-1.27	± 0.51 dB
2	113.5	114.3	-0.70	± 0.51 dB

Remark : The reading of DUC represent the Average, of five reading measurements.

Uncertainty Contributing Factor :- 1. Repeatability (based on five measurement) 2. Uncertainty of master instruments

3.Resulation of DUC

The evaluated Expanded Uncertainty in calibration at a coverage factor k = 2, for degrees of freedom = • and confidence


level is 95 % for Normal distribution.

Notes :-

1. Reference used are directly traceable to national standard through unbroken chain of calibration .

2. Results reported are valid at the time of and under the stated conditions of measurement

- 3. This Certificate refers only to the particular item calibrated.
- 4 .This certificate shall not be reproduced, except in full without the written permisson of LES-CCL, Kasna, Greater Noida (U.P.)

(A Division of Lata Envirotech Services)

K-307, UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.)

E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC225321000000567F Calib. Field - Fluid Flow		Page 1 of 3		
Certificate No.	LES-CCL/FF/RF/SC/2		no. riela - riula riow	rageroro	
Calibration Date	04.02.2021 Suggested Date of Next Calibration 03.02.2				
Customer Name :- Address :-	M/s Prism Johnson I (Cement Division: Ur Village - Mankahari, Tehsil - Rampur Bag (Madhya Pradesh)	nit - II)			
Reference :- S.R.F. No	2020/929	Date :- 23.06.2020	Date of Issue:-	06 02 2021	

01. DUC Fitted in instrument

Name	Make	Model	SI. No.
Gaseous Sampling Attechment	Envirotech Instruments	APM-411	516 - DTE - 97

02. Details of DUC

Name	Rotameter	Environmental Conditions During	Calibration
Make/Trade Mark	S S Flow	Temperature(°C)	25±10
SI.No.	09/0239	Relative Humidity (%)	45-75
Cal. Range	0 -3 lpm	B. Presure (mmHg)	742 50

03. Standard Equipment used for calibration

Standard Equipment Name	Range	SI. No.	Traceability	
Gas Flow Calibrator	0.5 -50 lpm	3319	LES-CCL, Gr. Noida (U.F	
Certificate No.	Calibration Date		Valid Up to	
LES-CCL/FF/RF/2216	28.07.2020		27 07 2021	

04. Calibration Procedure :- LES-CCL/WI/31/FF/SC-07

Remark 1.Refer page 2 of 3 for Calibration Results and 3 of 3 for Calibration Curve

2 The Flow Rate has been Referenced to Standard Temperature (20 °C) and Pressure (760 mmHg Absolute) Condition.

Notes :-	Authorized By
1. Reference used are directly traceable to national standard through	Addioinzed By
unbroken chain of calibration	
2. Desuits reported are valid at the time of and under the stated conditions of measurement	

3 This Certificate refers only to the particular item calibrated.	Sound
This certificate shall not be reproduced, except in full without the written	SHIVSRANKER SINGH
permisson of LES-CCL. Kasna, Greater Noida (U.P.)	(Chief Executive Officer)

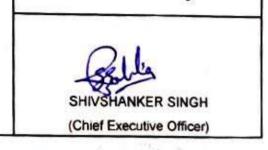
ULR No.	CC225321000000567F		
Calibratian Data			Page 2 of 3
Calibration Date	04.02.2021	Suggested Date of Next Callbert	
Certificate No.	LES-CCL/FF/RF/SC/2844	Suggested Date of Next Calibration	03.02.2022

05. Calibration Results for Flow of Rotameter

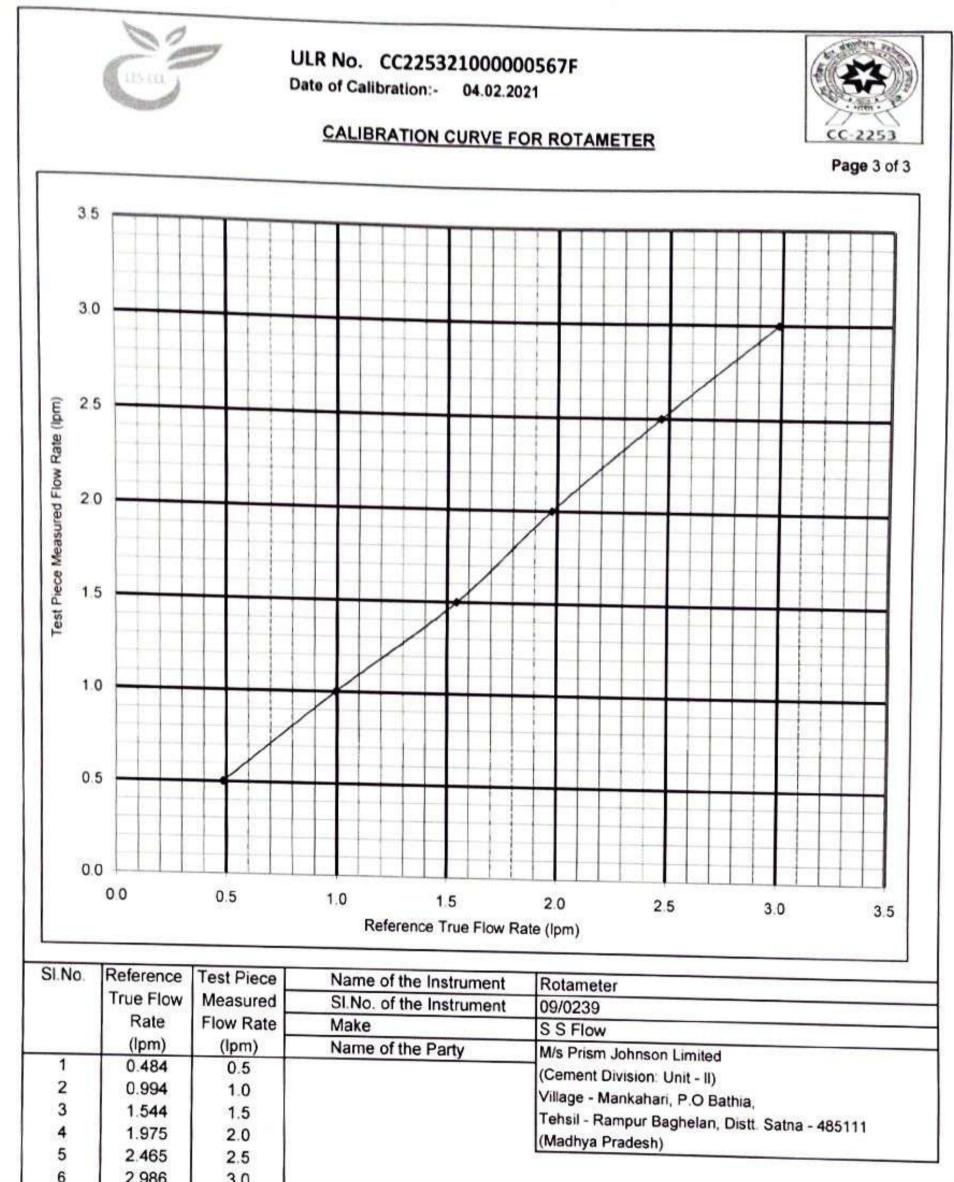
S.No.	(DUC)	Reference True		1	Error	Calibration
	Indicated reading	Flow rate		1	(%)	factor
-	(lpm)	(lpm)			FS	lucion
1	0.5	0.481			0.633	0.962
2	0.5	0.483			0.567	0.966
3	0.5	0.485			0.500	0.970
4	0.5	0.486			0.467	0.972
5	0.5	0.487			0.433	0.974
6	1.0	0.994			0.200	0.994
7	1.5	1.544			-1.467	1.029
8	2.0	1.975			0.833	0.988
9	2.5	2.465			1.167	0.986
10	3.0	2.982			0.600	
11	3.0	2.985			0.500	0.994
12	3.0	2.987			0.433	0.995
13	3.0	2.988			0.400	0.996
14	3.0	2.989			0.367	0.996
					(Curve Er	0.996
	Type A standard Uncertainty				(icioscu)
1	for repeated data (1-5)	± 0).0010 lpm			
	. for repeated data (10-14)	± 0	.0012 lpm			
	Expanded uncertainty in Actual		-C. 1. 0. 77203			
	measurement at 95% as a cover	age factor k=2				
1	. 0.5 lpm	±	14.01 % Rdg	or	2.16 %FS	
11	. 3.0 lpm	±	2.33 % Rdg	or	6.15 %FS	
Uncertai	nty Contributing Factor :-					
Repeat	ability (based on five measurements)				
Uncerta	inty of master instruments					
Resoluti	on of DUC					
he evaluation	ated Expanded Uncertainty in calibra	ation at a coverage factor $k = 2$.				
or degree	s of freedom == and confidence lev	el is 95 % for Normal distribution.				
alibratio	n Place: Calibration done at M/s F	Prism Johnson Limited in worksho	p Tehsil - Rampur	Baghelan	Distt. Satna (Madhya G	Pradaeh)

1. Reference used are directly traceable to national standard through

unbroken chain of calibration

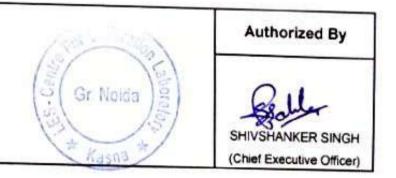

Notes :-

2. Results reported are valid at the time of and under the stated conditions of measurement


3. This Certificate refers only to the particular item calibrated.

4 .This certificate shall not be reproduced, except in full without the written

permisson of LES-CCL. Kasna, Greater Noida (U.P.)



 a	5.0

Notes :-

- Reference used are directly traceable to national standard through unbroken chain of calibration
- 2. Results reported are valid at the time of and under the stated conditions of measurement
- 3. This Certificate refers only to the particular item calibrated.
- This certificate shall not be reproduced, except in full without the written permission of LES-CCL. Kasna, Greater Noida (U.P.)

(A Division of Lata Envirotech Services)

K-307,UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.) E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC2253210000005	586F		
Certificate No.	LES-CCL/FF/RF/SC/2847		Calib. Field - Fluid Flow	Page 1 of 3
Calibration Date	04.02.2021	Suggested	Date of Next Calibration	03 02 2022
Customer Name :- Address :-	M/s Prism Johnson Limite (Cement Division: Unit - II Village - Mankahari, P.O B Tehsil - Rampur Baghelan (Madhya Pradesh)	ed I) Bathia,		
Reference :- S.R.F. No	2020/929	Date :- 23.06.202	Date of Issue:-	06 02 2021

01. DUC Fitted in instrument

Name	Make	Model	SI. No.
Gaseous Sampling Attechment	Envirotech Instruments	APM-411	1366 - DATE - G - 2000

02. Details of DUC

Name	Rotameter	Environmental Conditions During	Calibration
Make/Trade Mark	S S Flow	Temperature(°C)	25±10
SI.No.	09/0232	Relative Humidity (%)	45-75
Cal. Range	0 -3 lpm	B. Presure (mmHg)	742.50

03. Standard Equipment used for calibration

Standard Equipment Name	Range	SI. No.	Tracability
Gas Flow Calibrator	0.5 -50 lpm	3319	Traceability
Certificate No.	Calibration Date 28.07.2020		LES-CCL, Gr. Noida (U.P)
LES-CCL/FF/RF/2216			Valid Up to
	20.01.202	0	27.07.2021

04. Calibration Procedure :- LES-CCL/WI/31/FF/SC-07

Remark 1.Refer page 2 of 3 for Calibration Results and 3 of 3 for Calibration Curve

2. The Flow Rate has been Referenced to Standard Temperature (20 °C) and Pressure (760 mmHg Absolute) Condition.

Notes :-	
1. Reference used are directly traceable to national standard through	Authorized By
unbroken chain of calibration .	
2. Results reported are valid at the time of and under the stated conditions of measurement	

3. This Certificate refers only to the particular item calibrated.

4 .This certificate shall not be reproduced, except in full without the written

permisson of LES-CCL. Kasna, Greater Noida (U.P.)

ULR No.	CC22532100000058	6F Page 2 of
Calibration Date	04.02.2021	Suggested Date of Next Calibration 03.02.2022
Certificate No.	LES-CCL/FF/RF/SC/2847	

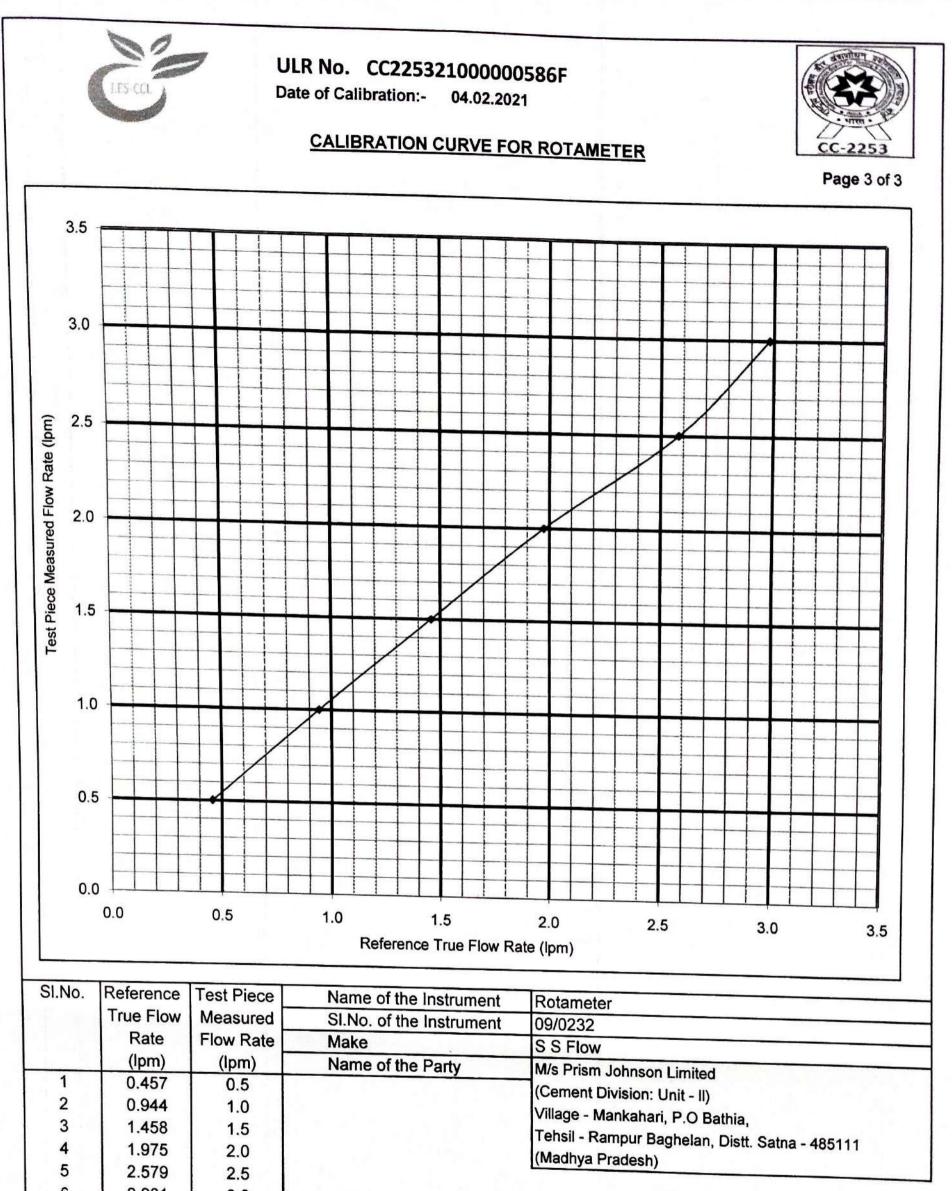
05. Calibration Results for Flow of Rotameter

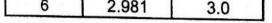
S.No.	(DUC)	Reference Tr	ue	Error	Calibration
	Indicated reading	Flow rate		(%)	factor
	(lpm)	(lpm)		FS	
1	0.5	0.455		1.500	0.910
2	0.5	0.456		1.467	0.912
3	0.5	0.457		1.433	0.914
4	0.5	0.459		1.367	0.918
5	0.5	0.460		1.333	0.920
6	1.0	0.944		1.867	0.944
7	1.5	1.458		1.400	0.972
8	2.0	1.975		0.833	0.988
9	2.5	2.579		-2.633	1.032
10	3.0	2.978		0.733	0.993
11	3.0	2.977		0.767	0.992
12	3.0	2.981		0.633	0.994
13	3.0	2.984		0.533	0.995
14	3.0	2.985		0.500	0.995
				(Curve Er	nclosed)
	Type A standard Uncertai	nty			
	I. for repeated data (1-5)	±	0.0009 lpm		
	II. for repeated data (10-14)	±	0.0015 lpm		
	Expanded uncertainty in	Actual flow			
	measurement at 95% as a	a coverage factor k=2			
	I. 0.5 lpm	±	14.84 % Rdg	or 2.16 %FS	
	II. 3.0 lpm	±	2.33 % Rdg	or 6.15 %FS	
Uncer	tainty Contributing Factor :-				
1. Repe	eatability (based on five measu	rements)			
2.Unce	rtainty of master instruments				
	lution of DUC				
The ev	aluated Expanded Uncertainty	in calibration at a coverage factor $k =$	2,		
for deg	rees of freedom =∞ and confid	ence level is 95 % for Normal distribut	ion.		

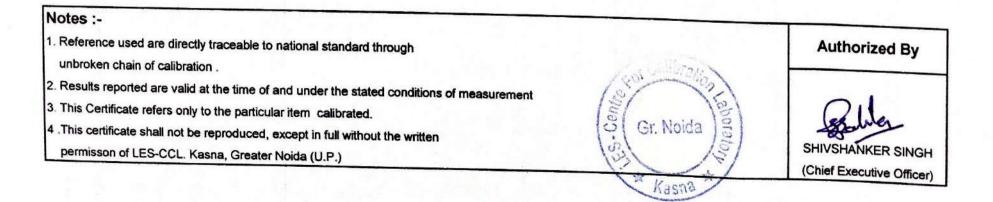
Notes :-

Authorized By

1. Reference used are directly traceable to national standard through


unbroken chain of calibration .


- 2. Results reported are valid at the time of and under the stated conditions of measurement
- 3. This Certificate refers only to the particular item calibrated.
- 4 .This certificate shall not be reproduced, except in full without the written


permisson of LES-CCL. Kasna, Greater Noida (U.P.)

\sim 1	
Salily	
SHIVSHANKER SIN	IGH
(Chief Executive Offi	icer)

Kasna

(A Division of Lata Envirotech Services)

CC-2253

K-307, UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.) E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC225321000000566	F	T
Certificate No.	LES-CCL/FF/RF/SC/566	Calib. Field - Fluid Flow	Page 1 of 3
Calibration Date	04.02.2021	Suggested Date of Next Calibration	03 02 2022
Customer Name :- Address :-	M/s Prism Johnson Limited (Cement Division: Unit - II) Village - Mankahari, P.O Bath Tehsil - Rampur Baghelan, Di (Madhya Pradesh)		
Reference :- S.R.F. No	2020/929	Date :- 23.06.2020 Date of Issue:	- 06.02.2021

01. DUC Fitted in instrument

Name	Make	Model	SI. No.
Gaseous Sampling Attechment	Envirotech Instruments	APM-411	4299 - DTC - 2011

02. Details of DUC

Name	Rotameter	Environmental Conditions During Calibration	
Make/Trade Mark	S S Flow	Temperature(°C)	25±10
SI.No.	2000/820	Relative Humidity (%)	45-75
Cal. Range	0 -3 lpm	B. Presure (mmHg)	742.50

03. Standard Equipment used for calibration

Standard Equipment Name	Range	SI. No.	Traceability
Gas Flow Calibrator	0.5 -50 lpm	3319	LES-CCL, Gr. Noida (U.P)
Certificate No.	Calibration Date 28.07.2020		Valid Up to
LES-CCL/FF/RF/2216			27.07.2021

04. Calibration Procedure :- LES-CCL/WI/31/FF/SC-07

Remark 1.Refer page 2 of 3 for Calibration Results and 3 of 3 for Calibration Curve

2. The Flow Rate has been Referenced to Standard Temperature (20 °C) and Pressure (760 mmHg Absolute) Condition.

Notes :-

Authorized By 1. Reference used are directly traceable to national standard through unbroken chain of calibration . 2. Results reported are valid at the time of and under the stated conditions of measurement

3. This Certificate refers only to the particular item calibrated.

4 . This certificate shall not be reproduced, except in full without the written

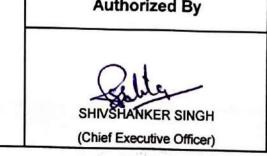
permisson of LES-CCL. Kasna, Greater Noida (U.P.)

CC225321000005665		
04 02 2024		Page 2 of 3
LES-CCL/FF/RF/SC/566	Suggested Date of Next Calibration	03.02.2022
	04.02.2021	Suddested Date of Next Calibration

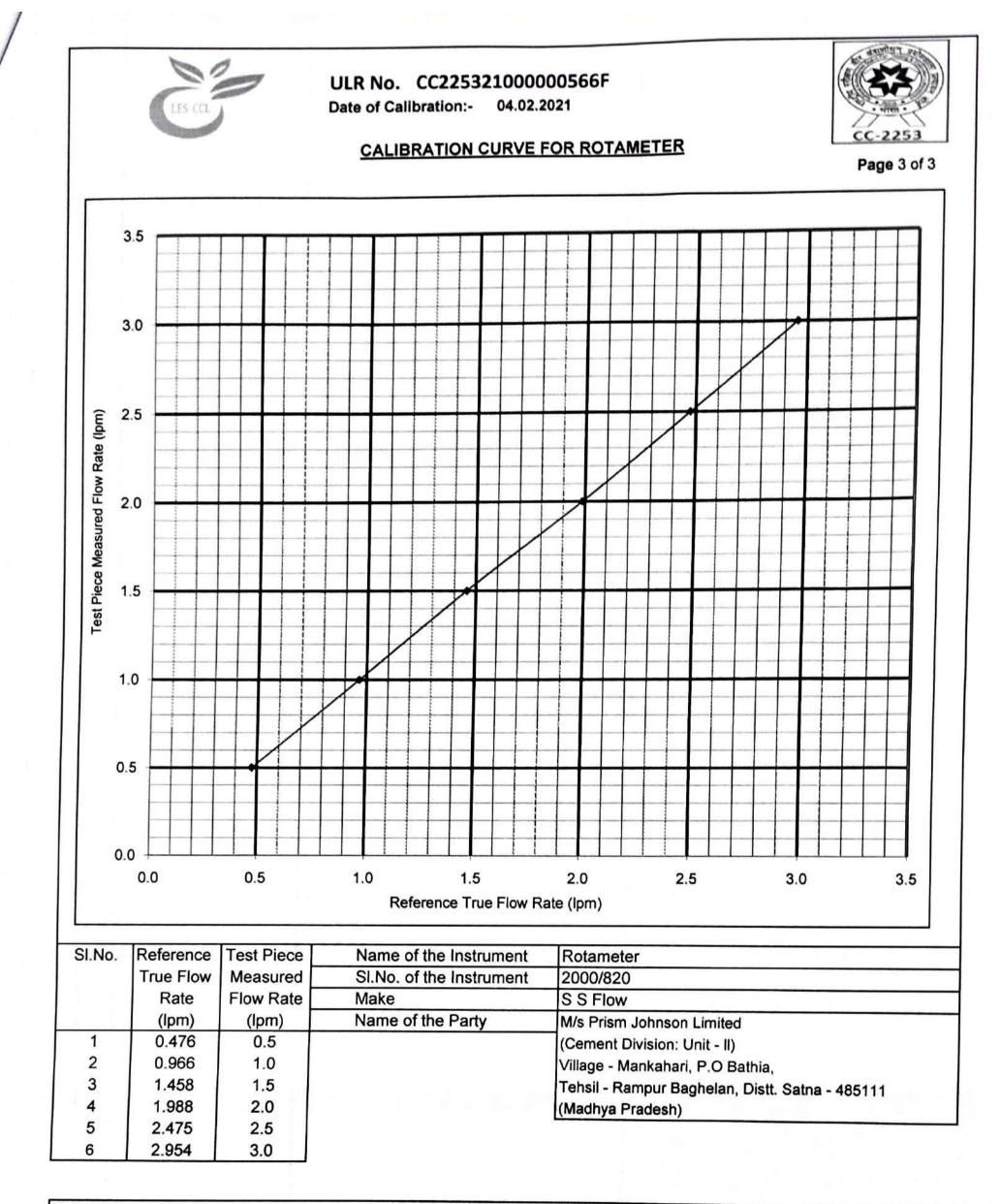
05. Calibration Results for Flow of Rotameter

S.No.	(DUC) Indicated reading	Reference True Flow rate		Error (%)	Calibration factor
1	(lpm)	(lpm)		FS	lactor
2	0.5	0.473		0.900	0.946
3	0.5	0.475		0.833	0.940
	0.5	0.476		0.800	0.952
4	0.5	0.477		0.767	14447 Keekster (142-34
5	0.5	0.478		0.733	0.954
6	1.0	0.966		1.133	0.956
7	1.5	1.458		1.400	0.966
8	2.0	1.988		0.400	0.972
9	2.5	2.475		0.833	0.994
10	3.0	2.951		1.633	0.990
11	3.0	2.952		1.600	0.984
12	3.0	2.955		1.500	0.984
13	3.0	2.956		1.467	0.985
14	3.0	2.957		1.433	0.985
	Type A standard Uncertainty			(Curve E	0.986 nclosed)
	I. for repeated data (1-5)	± 0	.0008 lpm		
I	I. for repeated data (10-14)		.0011 lpm		
	Expanded uncertainty in Actual fle				
	measurement at 95% as a coverage				
	I. 0.5 lpm		14.27 % Rdg	or 2.16 %FS	
1	l. 3.0 lpm	t	2.33 % Rdg	Or 2.16 %FS Or 6.15 %FS	
Uncerta	inty Contributing Factor :-		- the string	0.15 %-5	
1. Repea	tability (based on five measurements)				
2.Uncerta	ainty of master instruments				
	tion of DUC				
The eval	uated Expanded Uncertainty in calibrat	tion at a coverage factor $k = 2$,			
	es of freedom = and confidence leve				
Calibrati	ion Place: Calibration done at M/s Pr	riem Johnson Limited in wedgete			

Notes :-


A sufficient of the temp

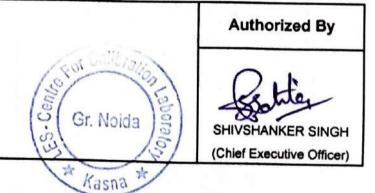
 Reference used are directly traceable to national standard through unbroken chain of calibration.


2. Results reported are valid at the time of and under the stated conditions of measurement

- 3. This Certificate refers only to the particular item calibrated.
- 4 .This certificate shall not be reproduced, except in full without the written

permisson of LES-CCL. Kasna, Greater Noida (U.P.)

Notes :-


1. Reference used are directly traceable to national standard through

unbroken chain of calibration .

2. Results reported are valid at the time of and under the stated conditions of measurement

3. This Certificate refers only to the particular item calibrated.

4 .This certificate shall not be reproduced, except in full without the written

(A Division of Lata Envirotech Services)

K-307, UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.) E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC2253210000005	65F	Calib. Field - Fluid Flow	Page 1 of 3
Certificate No.	LES-CCL/FF/RF/SC/563			. Lgo . o. o
Calibration Date	04.02.2021	Suggested	Date of Next Calibration	03.02.2022
Customer Name :- Address :-	M/s Prism Johnson Limite (Cement Division: Unit - II) Village - Mankahari, P.O Ba Tehsil - Rampur Baghelan (Madhya Pradesh)	athia,		
Reference :- S.R.F. No	2020/929	Date :- 23.06.202	20 Date of Issue:-	06.02.2021

01. DUC Fitted in instrument

Name	Make	Model	SI. No.	
Gaseous Sampling Attechment	Envirotech Instruments	APM-411	4297 - DTC - 2011	

02. Details of DUC

Name	Rotameter	Environmental Conditions During	Calibration
Make/Trade Mark	S S Flow	Temperature(°C)	25±10
SI.No.	10/0911	Relative Humidity (%)	45-75
Cal. Range	0 -3 lpm	B. Presure (mmHg)	742.50

03. Standard Equipment used for calibration

Standard Equipment Name	Range	SI. No.	Traceability
Gas Flow Calibrator	0.5 -50 lpm	3319	LES-CCL, Gr. Noida (U.P)
Certificate No.	Calibration Date		Valid Up to
LES-CCL/FF/RF/2216	28.07.2020		27.07.2021

04. Calibration Procedure :- LES-CCL/WI/31/FF/SC-07


Remark 1. Refer page 2 of 3 for Calibration Results and 3 of 3 for Calibration Curve

2. The Flow Rate has been Referenced to Standard Temperature (20 °C) and Pressure (760 mmHg Absolute) Condition.

Notes :-	Authorized By
1. Reference used are directly traceable to national standard through	Authonized By
unbroken chain of calibration .	
2. Results reported are valid at the time of and under the stated conditions of measurement	0.1

3. This Certificate refers only to the particular item calibrated.

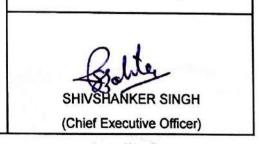
4 .This certificate shall not be reproduced, except in full without the written

ULR No.	CC225321000000565F		Page 2 of 3
Calibration Date	04.02.2021	Suggested Date of Next Calibration	
Certificate No.	LES-CCL/FF/RF/SC/563	Suggested Date of Next Calibration	03.02.2022

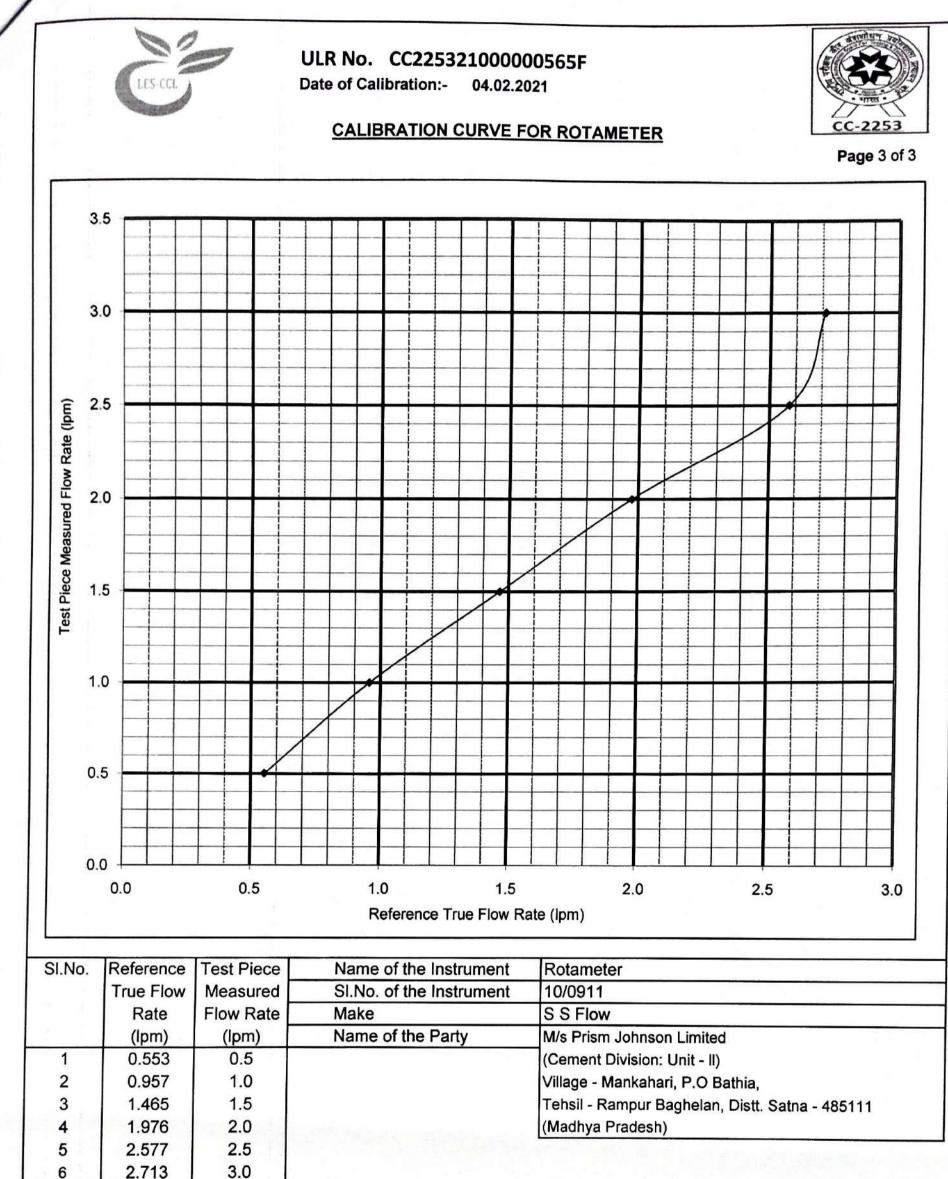
05. Calibration Results for Flow of Rotameter

S.No.	(DUC)	Reference True			Error	Calibration
	Indicated reading	Flow rate			(%)	factor
	(lpm)	(lpm)			FS	lactor
1	0.5	0.551			-1.700	1.102
2	0.5	0.552			-1.733	
3	0.5	0.553		1 1 1	-1.767	1.104
4	0.5	0.554			-1.800	1.106
5	0.5	0.555			-1.833	1.108
6	1.0	0.957			1.433	1.110
7	1.5	1.465			1.455	0.957
8	2.0	1.976				0.977
9	2.5	2.577			0.800	0.988
10	3.0	2.963			-2.567	1.031
11	3.0	2.965			1.233	0.988
12	3.0	2.966			1.167	0.988
13	3.0	2.670			1.133	0.989
14	3.0	2.000			11.000	0.890
		2.000			33.333	0.667
	Type A standard Uncertainty				(Curve E	nclosed)
	for repeated data (1-5)		0.0007.			
	for repeated data (10-14)		0.0007 lpm			
	Expanded uncertainty in Actual flo	±	0.1784 lpm			
	measurement at 95% as a coverage					
	0.5 lpm		10.07.00			
	3.0 lpm	±	12.27 % Rdg	or	2.16 %FS	
	y Contributing Factor :-	Ŧ	2.33 % Rdg	or	13.39 %FS	
	bility (based on five measurements)					
100000 100000 100000	ty of master instruments					
Resolutio	1725					
	ted Expanded Uncertainty in calibrati	ion at a coverage factor $k = 2$.				
	of freedom = and confidence level					
to persona en persona persona de la competitiva de la competitiv	Place: Calibration done at M/s Pr		on Tehsil - Ramour	Bachola	n Diett Satna /Madhua	Bradaab)

1. Reference used are directly traceable to national standard through

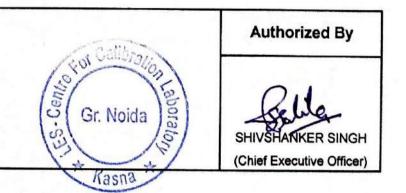

unbroken chain of calibration .

2. Results reported are valid at the time of and under the stated conditions of measurement


3. This Certificate refers only to the particular item calibrated.

Notes :-

4 .This certificate shall not be reproduced, except in full without the written


Notes :-

1. Reference used are directly traceable to national standard through

unbroken chain of calibration .

2. Results reported are valid at the time of and under the stated conditions of measurement

- 3. This Certificate refers only to the particular item calibrated.
- 4 .This certificate shall not be reproduced, except in full without the written

(A Division of Lata Envirotech Services)

K-307,UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.) E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC225321000000564	IF Calib	Field - Fluid Flow	Page 1 of 3
Certificate No.	LES-CCL/FF/RF/SC/2841			l uge i ei e
Calibration Date	04.02.2021	Suggested Date	of Next Calibration	03.02.2022
Customer Name :- Address :-	M/s Prism Johnson Limited (Cement Division: Unit - II) Village - Mankahari, P.O Bath Tehsil - Rampur Baghelan, D (Madhya Pradesh)			
Reference :- S.R.F. No	2020/929	Date :- 23.06.2020	Date of Issue:-	06.02.2021

01. DUC Fitted in instrument

Name	Make	Model	SI. No.
Gaseous Sampling Attechment	Envirotech Instruments	APM-411	4298 -DTC - 2011

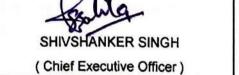
02. Details of DUC

Name	Rotameter	Environmental Conditions During (Calibration
Make/Trade Mark	S S Flow	Temperature(°C)	25±10
SI.No.	09/0228	Relative Humidity (%)	45-75
Cal. Range	0 -3 lpm	B. Presure (mmHg)	742.50

03. Standard Equipment used for calibration

Standard Equipment Name	Range	SI. No.	Traceability	
Gas Flow Calibrator	0.5 -50 lpm	3319	LES-CCL, Gr. Noida (U.P)	
Certificate No.	Calibration Date		Valid Up to	
LES-CCL/FF/RF/2216	28.07.2020		27.07.2021	

04. Calibration Procedure :- LES-CCL/WI/31/FF/SC-07


Remark 1. Refer page 2 of 3 for Calibration Results and 3 of 3 for Calibration Curve

2. The Flow Rate has been Referenced to Standard Temperature (20 °C) and Pressure (760 mmHg Absolute) Condition.

Notes :-	Authorized By
1. Reference used are directly traceable to national standard through	Addionzed By
unbroken chain of calibration .	
2. Results reported are valid at the time of and under the stated conditions of measurement	Out

3. This Certificate refers only to the particular item calibrated.

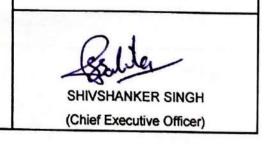
4 . This certificate shall not be reproduced, except in full without the written

ULR No.	CC225321000000564F		Page 2 of 3
Calibration Date	04.02.2021	Suggested Date of Next Calibration	03.02.2022
Certificate No.	LES-CCL/FF/RF/SC/2841		

05. Calibration Results for Flow of Rotameter

Indicated reading		Error	Calibration
Indicated reading Flow rate		(%)	factor
(Ipm)	(lpm)	FS	
0.5	0.481	0.633	0.962
0.5	0.482	0.600	0.964
0.5	0.485	0.500	0.970
0.5	0.486	0.467	0.972
0.5	0.487	0.433	0.974
1.0	0.955	1.500	0.955
1.5	1.554	-1.800	1.036
2.0	1.985	0.500	0.993
2.5	2.477	0.767	0.991
3.0	2.941	1.967	0.980
3.0	2.942	1.933	0.981
3.0	2.945	 (a) approximate 	0.982
3.0	2.946	1.800	0.982
3.0	2.947	1.767	0.982
Type A standard Uncertainty		(Curve E	nclosed)
10 (CON)			
17			
-			
		or 2.16 %FS	
	± 2.33 % Rdg	or 6.15 %FS	
COLOR OF STREAMS AND A CONSTRUCTION	nandere og stand skanske være en		
	0.5 0.5 0.5 0.5 1.0 1.5 2.0 2.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	0.5 0.482 0.5 0.485 0.5 0.486 0.5 0.487 1.0 0.955 1.5 1.554 2.0 1.985 2.5 2.477 3.0 2.941 3.0 2.942 3.0 2.945 3.0 2.946 3.0 2.947	0.5 0.482 0.600 0.5 0.485 0.500 0.5 0.486 0.467 0.5 0.487 0.433 1.0 0.955 1.500 1.5 1.554 -1.800 2.0 1.985 0.500 2.5 2.477 0.767 3.0 2.941 1.967 3.0 2.942 1.933 3.0 2.945 1.833 3.0 2.946 1.800 3.0 2.947 1.767 (Curve E Type A standard Uncertainty for repeated data (1-5) \pm 0.0011 lpm traped ducertainty in Actual flow measurement at 95% as a coverage factor k=2 0.5 lpm \pm 0.30 vr 6.15 %FS 3.0 lpm \pm 2.33 % Rdg or 6.15 %FS 3.0 lpm \pm 2.33 % Rdg or 6.15 %FS 9 of master instruments hof DUC ed Expanded Uncertainty in calibration at a coverage factor $k = 2$, dex or dex or de

Notes :-

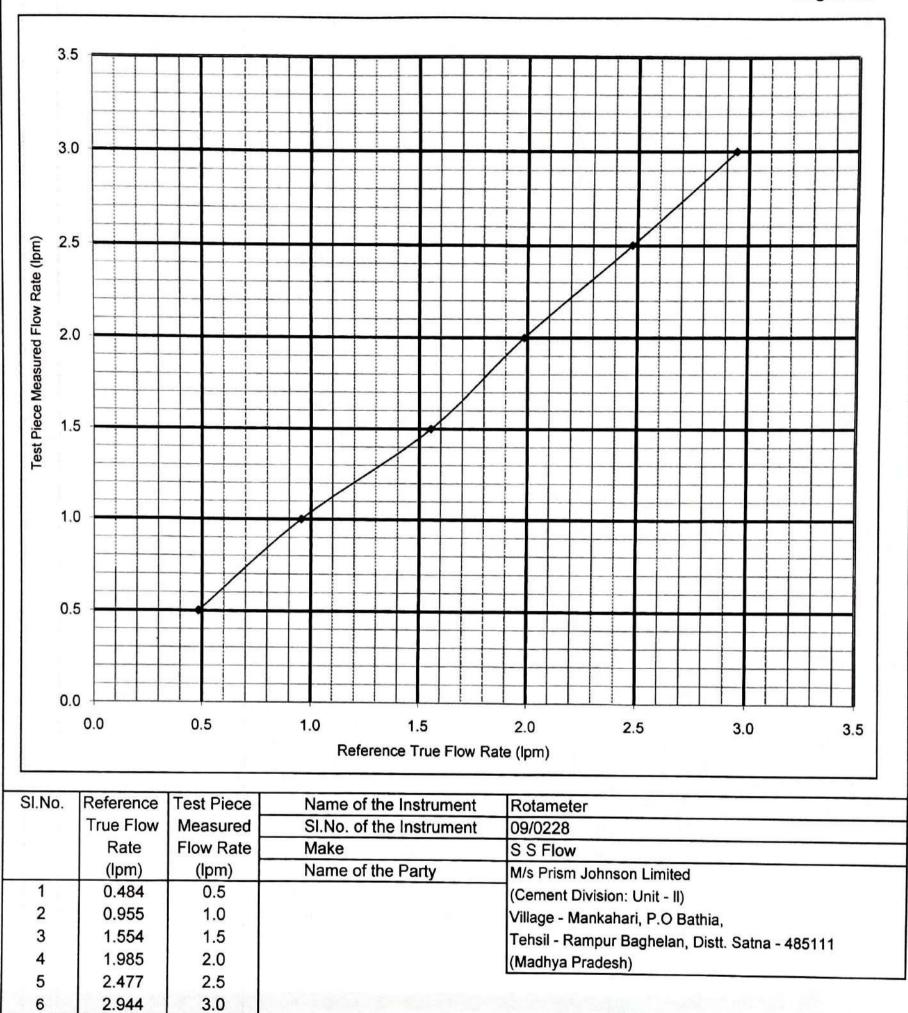

1. Reference used are directly traceable to national standard through

unbroken chain of calibration .

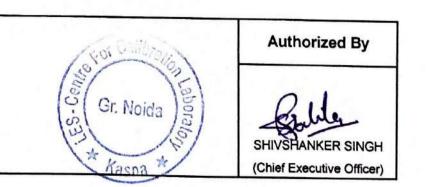
2. Results reported are valid at the time of and under the stated conditions of measurement

3. This Certificate refers only to the particular item calibrated.

4 .This certificate shall not be reproduced, except in full without the written


ULR No. CC225321000000564F

Date of Calibration:- 04.02.2021



Page 3 of 3

Notes :-

- 1. Reference used are directly traceable to national standard through
- unbroken chain of calibration .
- 2. Results reported are valid at the time of and under the stated conditions of measurement
- 3. This Certificate refers only to the particular item calibrated.
- 4 .This certificate shall not be reproduced, except in full without the written permisson of LES-CCL. Kasna, Greater Noida (U.P.)

(A Division of Lata Envirotech Services)

K-307, UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.)

E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC225321000000563	3F		
Certificate No.	LES-CCL/FF/RF/SC/563 Cal		lib. Field - Fluid Flow	Page 1 of 3
Calibration Date	04.02.2021	Suggested Da	ate of Next Calibration	02 02 2022
Customer Name :- Address :-	M/s Prism Johnson Limited (Cement Division: Unit - II) Village - Mankahari, P.O Batl Tehsil - Rampur Baghelan, D (Madhya Pradesh)	hia,		
Reference :- S.R.F. No	2020/929	Date :- 23.06.2020	Date of Issue:-	06.02.2021

01. DUC Fitted in instrument

Name	Make	Model	SI. No.
Gaseous Sampling Attechment	Envirotech Instruments	APM-411	1367 - DATE - 2000

02. Details of DUC

Name	Rotameter	Environmental Conditions During Calibration	
Make/Trade Mark	S S Flow	Temperature(°C)	25±10
SI.No.	2004/1046	Relative Humidity (%)	45-75
Cal. Range	0 -3 lpm	B. Presure (mmHg)	742.50

03. Standard Equipment used for calibration

Standard Equipment Name	Range	SI. No.	Traceability
Gas Flow Calibrator	0.5 -50 lpm	3319	LES-CCL, Gr. Noida (U.P)
Certificate No.	Calibration Date		Valid Up to
LES-CCL/FF/RF/2216	28.07.2020		27.07.2021

04. Calibration Procedure :- LES-CCL/WI/31/FF/SC-07

Remark 1.Refer page 2 of 3 for Calibration Results and 3 of 3 for Calibration Curve

2. The Flow Rate has been Referenced to Standard Temperature (20 °C) and Pressure (760 mmHg Absolute) Condition.

Notes :-	
1. Reference used are directly traceable to national standard through	Authorized By
unbroken chain of calibration .	
2. Results reported are valid at the time of and under the stated conditions of measurement	0.1

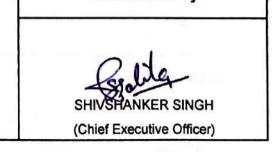
- 3. This Certificate refers only to the particular item calibrated.
- 4 .This certificate shall not be reproduced, except in full without the written

ULR No.	CC225321000000563F		Page 2 of 3
Calibration Date	04.02.2021	Suggested Date of Next Calibration	03.02.2022
Certificate No.	LES-CCL/FF/RF/SC/563		

05. Calibration Results for Flow of Rotameter

Indicated reading Flow rate (%) factor (lpm) (lpm) FS - 1 0.5 0.461 1.300 0.922 2 0.5 0.462 1.267 0.924 3 0.5 0.465 1.167 0.930 4 0.5 0.466 1.133 0.932 5 0.5 0.467 1.100 0.934 6 1.0 0.958 1.400 0.958 7 1.5 1.577 -2.567 1.051 8 2.0 1.966 1.133 0.983 9 2.5 2.455 1.500 0.982 10 3.0 2.986 0.467 0.995 11 3.0 2.988 0.400 0.996 12 3.0 2.988 0.400 0.996 13 3.0 2.989 0.367 0.996 14 3.0 2.989 0.367 0.996	S.No.	(DUC)	Reference Tru	he		Error	Calibration
(lpm) (lpm) FS 1 0.5 0.461 1.300 0.922 2 0.5 0.462 1.267 0.924 3 0.5 0.465 1.167 0.930 4 0.5 0.466 1.133 0.932 5 0.5 0.467 1.100 0.934 6 1.0 0.958 1.400 0.958 7 1.5 1.577 -2.567 1.051 8 2.0 1.966 1.133 0.983 9 2.5 2.455 1.500 0.982 10 3.0 2.986 0.467 0.995 11 3.0 2.988 0.400 0.996 12 3.0 2.988 0.400 0.996 13 3.0 2.989 0.367 0.995 14 3.0 2.989 0.367 0.995 14 3.0 lpm ± 0.33 % Rdg or 2.16 %FS		Indicated reading	Flow rate	1.1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	(%)	factor
2 0.5 0.462 1.267 0.924 3 0.5 0.465 1.167 0.930 4 0.5 0.466 1.133 0.932 5 0.5 0.467 1.100 0.934 6 1.0 0.958 1.400 0.958 7 1.5 1.577 -2.567 1.051 8 2.0 1.966 1.133 0.983 9 2.5 2.455 1.500 0.982 10 3.0 2.986 0.467 0.995 11 3.0 2.987 0.433 0.996 12 3.0 2.988 0.400 0.996 13 3.0 2.989 0.367 0.996 14 3.0 2.989 0.367 0.996 Type A standard Uncertainty ± 0.0006 lpm ± 0.996 14 3.0 2.989 0.367 0.996 I. for repeated data (10-14) ± 0.0006 lpm ± 5.15 %FS Expanded uncertainty in Actual flow ± 2.33 % Rdg Or 2.16 %FS I. o.5 lpm ± 14.63 % Rdg Or 2.16 %FS <t< th=""><th></th><th>(lpm)</th><th>(lpm)</th><th></th><th></th><th></th><th></th></t<>		(lpm)	(lpm)				
3 0.5 0.465 1.167 0.930 4 0.5 0.466 1.133 0.932 5 0.5 0.467 1.100 0.934 6 1.0 0.958 1.400 0.958 7 1.5 1.577 -2.567 1.051 8 2.0 1.966 1.133 0.983 9 2.5 2.455 1.500 0.982 10 3.0 2.986 0.467 0.995 11 3.0 2.987 0.433 0.996 12 3.0 2.988 0.400 0.996 13 3.0 2.986 0.467 0.995 14 3.0 2.989 0.367 0.996 type A standard Uncertainty 1. for repeated data (1-5) ± 0.00011 lpm t 0.996 13.0 lpm ± 2.33 % Rdg or 6.15 %FS iccertainty Contributing Factor :- 3.3 % Rdg or 6.15 %FS	1					1.300	0.922
4 0.5 0.466 1.133 0.932 5 0.5 0.467 1.100 0.934 6 1.0 0.958 1.400 0.958 7 1.5 1.577 -2.567 1.051 8 2.0 1.966 1.133 0.983 9 2.5 2.455 1.500 0.982 10 3.0 2.986 0.467 0.995 11 3.0 2.987 0.433 0.996 12 3.0 2.986 0.467 0.995 13 3.0 2.986 0.467 0.995 14 3.0 2.989 0.367 0.996 (Curve Enclosed) Type A standard Uncertainty 1. for repeated data (10-14) ± 0.00011 lpm	2	0.5	0.462			1.267	0.924
5 0.5 0.467 1.100 0.934 6 1.0 0.958 1.400 0.958 7 1.5 1.577 -2.567 1.051 8 2.0 1.966 1.133 0.983 9 2.5 2.455 1.500 0.982 10 3.0 2.986 0.467 0.995 11 3.0 2.987 0.433 0.996 12 3.0 2.986 0.467 0.995 13 3.0 2.986 0.467 0.995 14 3.0 2.989 0.367 0.996 (Curve Enclosed) Type A standard Uncertainty 1. for repeated data (10-14) ± 0.0011 lpm t 1.63 % Rdg or 2.16 %FS	3	0.5	0.465			1.167	0.930
6 1.0 0.958 1.400 0.958 7 1.5 1.577 -2.567 1.051 8 2.0 1.966 1.133 0.983 9 2.5 2.455 1.500 0.982 10 3.0 2.986 0.467 0.995 11 3.0 2.987 0.433 0.996 12 3.0 2.988 0.400 0.995 13 3.0 2.986 0.467 0.995 14 3.0 2.988 0.400 0.996 13 3.0 2.986 0.467 0.995 14 3.0 2.989 0.367 0.996 Type A standard Uncertainty 1. for repeated data (10-14) ± 0.0006 lpm Expanded uncertainty in Actual flow t 0.33 % Rdg or 2.16 % F8 I. 3.0 lpm ± 2.33 % Rdg or 6.15 % F5	4	0.5	0.466			1.133	0.932
7 1.5 1.577 -2.567 1.051 8 2.0 1.966 1.133 0.983 9 2.5 2.455 1.500 0.982 10 3.0 2.986 0.467 0.995 11 3.0 2.987 0.433 0.996 12 3.0 2.988 0.400 0.995 13 3.0 2.986 0.467 0.995 14 3.0 2.986 0.467 0.995 14 3.0 2.986 0.467 0.995 14 3.0 2.986 0.467 0.995 14 3.0 2.989 0.367 0.996 Curve Enclosed trepated data (1-5) ± 0.0011 lpm 1. for repeated data (10-14) ± 0.0006 lpm Expanded uncertainty in Actual flow measurement at 95% as a coverage factor k=2	5	0.5	0.467			1.100	0.934
8 2.0 1.966 1.133 0.983 9 2.5 2.455 1.500 0.982 10 3.0 2.986 0.467 0.995 11 3.0 2.987 0.433 0.996 12 3.0 2.988 0.400 0.995 13 3.0 2.986 0.467 0.995 14 3.0 2.986 0.467 0.995 14 3.0 2.989 0.367 0.996 (Curve Enclosed) Type A standard Uncertainty 1. for repeated data (1-5) ± 0.0011 lpm t 0.996 It for repeated data (10-14) ± 0.0006 lpm Expanded uncertainty in Actual flow measurement at 95% as a coverage factor k=2 . . . 1. 0.5 lpm ± 14.63 % Rdg or 6.15 %FS is .0 lpm ± 2.33 % Rdg or 6.15 %FS Incertainty Omaster instruments Repeatability (based on five measurements) Incertainty of mas	6	1.0	0.958			1.400	0.958
9 2.5 2.455 1.500 0.982 10 3.0 2.986 0.467 0.995 11 3.0 2.987 0.433 0.996 12 3.0 2.988 0.400 0.995 13 3.0 2.986 0.467 0.995 14 3.0 2.986 0.467 0.995 14 3.0 2.989 0.367 0.996 (Curve Enclosed) Type A standard Uncertainty 1. for repeated data (1-5) ± 0.00011 lpm t 0.0006 lpm Expanded uncertainty in Actual flow measurement at 95% as a coverage factor k=2 1. 0.5 lpm ± 14.63 % Rdg or 2.16 %FS . ii. 3.0 lpm ± 2.33 % Rdg or 6.15 %FS . Incertainty Contributing Factor :- Repeatability (based on five measurements) Incertainty of master instruments Resolution of DUC	7	1.5	1.577			-2.567	1.051
10 3.0 2.986 0.467 0.995 11 3.0 2.987 0.433 0.996 12 3.0 2.988 0.400 0.996 13 3.0 2.986 0.467 0.995 14 3.0 2.986 0.400 0.996 13 3.0 2.989 0.367 0.995 14 3.0 2.989 0.367 0.996 (Curve Enclosed) Type A standard Uncertainty 1. for repeated data (1-5) ± 0.0006 lpm (Curve Enclosed) Expanded uncertainty in Actual flow ± 0.0006 lpm (Curve Enclosed) Expanded uncertainty in Actual flow ± 2.33 % Rdg or 2.16 %FS II. 3.0 lpm ± 2.33 % Rdg or 6.15 %FS (Curve Enclosed) Incertainty Contributing Factor :- Repeatability (based on five measurements) Incertainty of master instruments Resolution of DUC	8	2.0	1.966			1.133	0.983
11 3.0 2.987 0.433 0.996 12 3.0 2.988 0.400 0.996 13 3.0 2.986 0.467 0.995 14 3.0 2.989 0.367 0.996 (Curve Enclosed) Type A standard Uncertainty 1. for repeated data (1-5) ± 0.0011 lpm	9	2.5	2.455		1.1	1.500	0.982
12 3.0 2.988 0.400 0.996 13 3.0 2.986 0.467 0.995 14 3.0 2.989 0.367 0.996 (Curve Enclosed) Type A standard Uncertainty 1. for repeated data (1-5) ± 0.0011 lpm	10	3.0	2.986	and a second of		0.467	0.995
13 3.0 2.986 0.467 0.995 14 3.0 2.989 0.367 0.995 (Curve Enclosed) Type A standard Uncertainty 1. for repeated data (1-5) ± 0.0011 lpm (Curve Enclosed) 11. for repeated data (10-14) ± 0.0006 lpm (Curve Enclosed) 11. for repeated data (10-14) ± 0.0006 lpm (Curve Enclosed) 11. for repeated data (10-14) ± 0.0006 lpm (Curve Enclosed) 11. for repeated data (10-14) ± 0.0006 lpm (Curve Enclosed) 11. for repeated data (10-14) ± 0.0006 lpm (Curve Enclosed) 11. for repeated data (10-14) ± 0.0006 lpm (Curve Enclosed) 11. for repeated data (10-14) ± 0.0006 lpm (Curve Enclosed) 11. for repeated data (10-14) ± 0.0006 lpm (Curve Enclosed) 11. for repeated data (10-14) ± 0.0006 lpm (Curve Enclosed) 11. for repeated data (10-14) ± 2.03 % Rdg (Curve Enclosed) 11. for repeated data (10-14) ± 2.03 % Rdg (Curve Enclose) <	11	3.0	2.987			0.433	0.996
14 3.0 2.989 0.367 0.996 (Curve Enclosed) Type A standard Uncertainty I. for repeated data (1-5) ± 0.0011 lpm II. for repeated data (10-14) ± 0.0006 lpm Expanded uncertainty in Actual flow measurement at 95% as a coverage factor k=2 . I. 0.5 lpm ± 14.63 % Rdg or 2.16 %FS II. 3.0 lpm ± 2.33 % Rdg or 6.15 %FS Incertainty Contributing Factor :- Repeatability (based on five measurements) Incertainty of master instruments Repeatability of DUC 	12	3.0	2.988			0.400	0.996
Type A standard Uncertainty (Curve Enclosed) I. for repeated data (1-5) ± 0.0011 lpm II. for repeated data (10-14) ± 0.0006 lpm Expanded uncertainty in Actual flow measurement at 95% as a coverage factor k=2 . I. 0.5 lpm ± 14.63 % Rdg or 2.16 %FS II. 3.0 lpm ± 2.33 % Rdg or 6.15 %FS Incertainty Contributing Factor :- Repeatability (based on five measurements) Uncertainty of master instruments Resolution of DUC Expolution of DUC Expolution of DUC Expolution of DUC	13	3.0	2.986			0.467	0.995
Type A standard Uncertainty i 0.0011 lpm I. for repeated data (10-14) ± 0.0006 lpm Expanded uncertainty in Actual flow	14	3.0	2.989			0.367	0.996
I. for repeated data (1-5) ± 0.0011 lpm II. for repeated data (10-14) ± 0.0006 lpm Expanded uncertainty in Actual flow					(Curve Enclosed)		iclosed)
II. for repeated data (10-14) ± 0.0006 lpm Expanded uncertainty in Actual flow		Type A standard Uncertainty					
Expanded uncertainty in Actual flow measurement at 95% as a coverage factor k=2 I. 0.5 lpm ± 14.63 % Rdg Or 2.16 %FS II. 3.0 lpm ± 2.33 % Rdg Or 6.15 %FS Incertainty Contributing Factor :- Repeatability (based on five measurements) Incertainty of master instruments Resolution of DUC	1	. for repeated data (1-5)	±	0.0011 lpm			
measurement at 95% as a coverage factor k=2 I. 0.5 lpm ± 14.63 % Rdg Or 2.16 %FS II. 3.0 lpm ± 2.33 % Rdg Or 6.15 %FS incertainty Contributing Factor :- Exepeatability (based on five measurements) Incertainty of master instruments Incertainty of DUC	II	. for repeated data (10-14)	±	0.0006 lpm			
I. 0.5 lpm ± 14.63 % Rdg Or 2.16 %FS II. 3.0 lpm ± 2.33 % Rdg Or 6.15 %FS incertainty Contributing Factor :- - - - Repeatability (based on five measurements) - - - Incertainty of master instruments - - - Resolution of DUC - - - -		Expanded uncertainty in Actual fl	ow				
II. 3.0 lpm ± 2.33 % Rdg Or 6.15 %FS incertainty Contributing Factor :- Repeatability (based on five measurements) Incertainty of master instruments Incertainty of master instruments Resolution of DUC Incertainty of master instruments Incertainty of master instruments Incertainty of DUC		measurement at 95% as a covera	ge factor k=2				
Acertainty Contributing Factor :- Repeatability (based on five measurements) Incertainty of master instruments Resolution of DUC	1	. 0.5 lpm	±	14.63 % Rdg	or	2.16 %FS	
Repeatability (based on five measurements) Incertainty of master instruments Resolution of DUC	11	. 3.0 lpm	±	2.33 % Rdg	or	6.15 %FS	
Incertainty of master instruments Resolution of DUC	Uncertai	nty Contributing Factor :-					
Resolution of DUC	. Repeat	ability (based on five measurements)					
	Uncerta	inty of master instruments					
e evaluated Expanded Uncertainty in calibration at a coverage factor $k = 2$,	Resolut	ion of DUC					
	he evalu	ated Expanded Uncertainty in calibra	tion at a coverage factor $k = 2$,	No lune			

for degrees of freedom =∞ and confidence level is 95 % for Normal distribution.

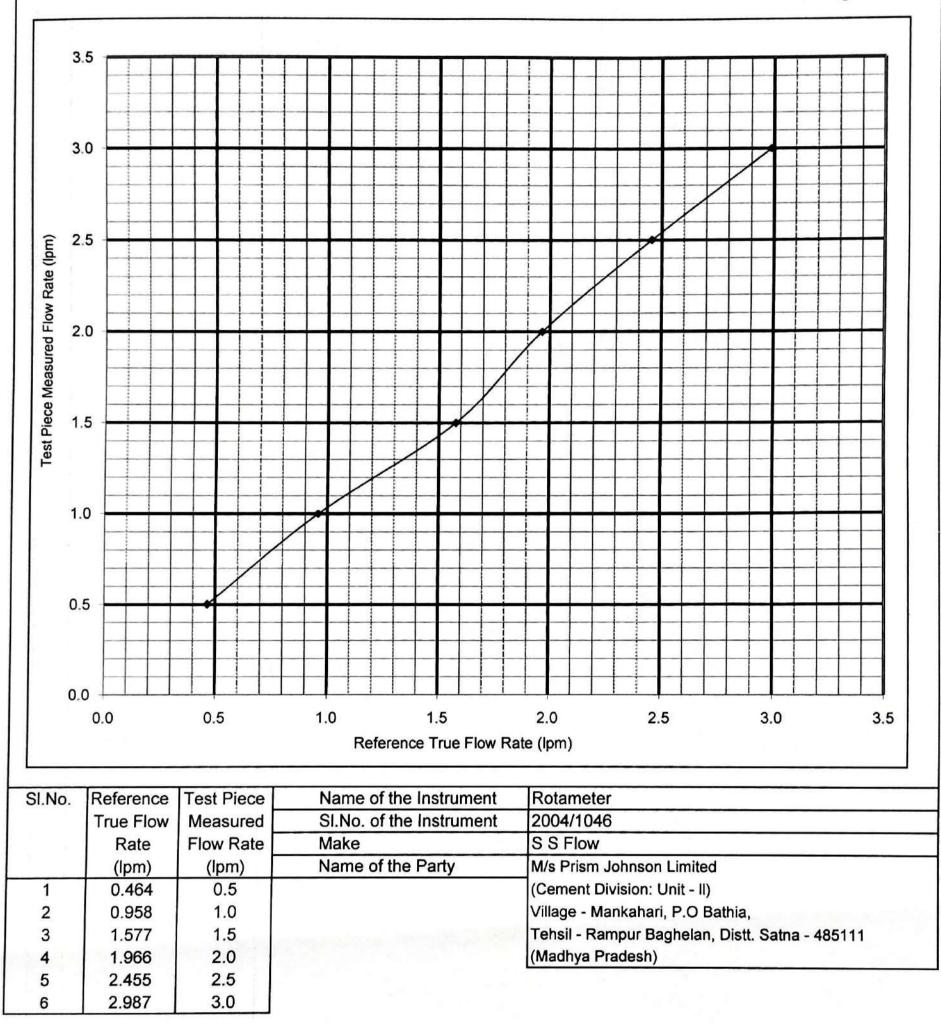

Calibration Place: Calibration done at M/s Prism Johnson Limited in workshop Tehsil - Rampur Baghelan, Distt. Satna ,(Madhya Pradesh)

Notes :-

1. Reference used are directly traceable to national standard through

unbroken chain of calibration .

- 2. Results reported are valid at the time of and under the stated conditions of measurement
- 3. This Certificate refers only to the particular item calibrated.
- 4 .This certificate shall not be reproduced, except in full without the written


ULR No. CC225321000000563F

CALIBRATION CURVE FOR ROTAMETER

Date of Calibration:- 04.02.2021

Page 3 of 3

Notes :-

1. Reference used are directly traceable to national standard through

unbroken chain of calibration .

2. Results reported are valid at the time of and under the stated conditions of measurement

3. This Certificate refers only to the particular item calibrated.

 This certificate shall not be reproduced, except in full without the written permisson of LES-CCL. Kasna, Greater Noida (U.P.)

(A Division of Lata Envirotech Services)

K-307, UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.)

E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC225321000000562F				
Certificate No.	LES-CCL/ET/TT/2102	Calib. Field - Electro-Technical	Page 1 of 1		
Calibration Date	05.02.2021 Suggested Date of Next Calibration		04.02.2022		
Customer Name :-	M/s Prism Johnson Limited		04.02.2022		
Address :-	(Cement Division: Unit - II)				
	Village - Mankahari, P.O Bathia,				
	Tehsil - Rampur Baghelan, Distt. ((Madhya Pradesh)	Satna - 485111			
Reference :- S.R.F No	.: - 2020/929	Date: - 23.06.2020 Date of	Issue:- 06.02.2021		

01. DUC Fitted in instrument

Name	Make	Model	SI.No.
Fine Particulate Sampler	Envirotech Instruments	APM - 550	724 - DTC - 2011

02. Details of (DUC)

Name	Time Totalizer	Environmental Conditions During Ca		
Make/Trade Mark	05.0	Environmental Conditions Dur	ing Calibration	
	CE Germany	Temperature (°C)	25 ± 3	
SI.No.	T - 724	Relative Humidity (%)	45 - 75	
		B. Pressure (mmHg)	746.70	

03. Standard Equipment used for calibration

Standard Equipment Name	Range	SI.No./ID.No.	Traceability	
Digital Automatic Timer	10 Sec - 4 hrs	LES-CCL/R/2507	CCTPL, Noida (U.P)	
Calibration Certificate No. CCTPL/TM/0170/01		Calibration Date	Valid Up to	
		30.10.2020	29.10.2021	

04. Calibration Procedure LES-CCL/WI/31/ET/01

05. Calibration Results :

DUC has been calibrated for following Parameter (S) ranges (S)

S.No.	Displayed Value on DUC Hrs(Min)	Reference Time (Min)	Error (%)	Expanded Uncertainty at 95 % of Confidence level (k =2) (%)
1	0.25 (15.0 Min) (Final Readings of TTR at the end of Calibration: 1233.92 hrs)	15.0076	-0.05	± 3.329 %

Uncertainty Contributing Factor :-

1. Repeatability (based on five measurement)

2. Uncertainty of master instruments

3. Uncertainty due to resolution of DUC

The evaluated Expanded Uncertainty in calibration at a coverage factor k = 2, for degrees of freedom == and confidence level is 95 % for Normal distribution.

Notes :-	
 Reference used are directly traceable to national standard through unbroken chain of calibration. 	Authorized By
	000
Dermisson of LES COL Kassa On the state of t	SHIV MANKER SINGH (Chief Executive Officer)
Kasna	

(A Division of Lata Envirotech Services)

K-307,UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.) E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC2253210000056	31F		T
Certificate No.	LES-CCL/FF/PM/SC/958	Calib. Fie	Calib. Field - Fluid Flow	
Calibration Date	04.02.2021	Suggested Date of Next Calibration 03.0		03 03 2022
Customer Name :- Address :-	M/s Prism Johnson Limit (Cement Division: Unit - I Village - Mankahari, P.O B Tehsil - Rampur Baghelar (Madhya Pradesh)	ed II) Bathia.		
Reference :- S.R.F. No	2020/929	Date :- 23.06.2020	Date of Issue:-	06.02.2021

01. DUC Fitted in instrument

Name	Make	Model	SI.No.
Fine Particulate Sampler	Envirotech Instruments	APM - 550	724 - DTC - 2011
		74 10 000	724 - DTC - 2011

02. Details of DUC

Name	Dry Gas Meter	Environmental Conditions During Co			
		Environmental Conditions During Calibration			
	Itron / G1.6	Temperature (°C)	25 ± 10		
SI.No.	110121348	Relative Humidity (%)			
Cal. Range	16.67 lpm (±5%)		45-75		
	[10.07 lp11 (±5%)	Baromatric Pressure (mmHg)	746 10		

03. Standard Equipment used for calibration

SI.No.	Standard Equipment Name	Range	SI.No. / ID.No.	Traceability	
1	Gas Flow Calibrator	0.5 -50 lpm	3319 / LES-CCL/R/4902	LES - CCL, Gr. Noida	
2	Digital Stop Watch	10 Sec 59 min	LES-CCL/R/14510	LES - CCL, Gr. Noida	
SI.No.	Certificate No.	Calibration		Valid Up to	
1	LES-CCL/FF/RF/2216	28.07.20	20	27.07.2021	
2	LES-CCL/ET/SW/404	28.09.20	20	27.09.2021	

04. Calibration Procedure :- LES-CCL/WI/31/FF/SC/07

Remark : 1.Refer page 2 of 2 for Calibration Results

2. The Flowrate has been Referenced to standard Temperature (20 °C) and Pressure (760 mmHg Absolute) Condition.

10103	
 Reference used are directly traceable to national standard through unbroken chain of calibration. 	Authorized By
 Results reported are valid at the time of and under the stated conditions of measurement This Certificate refers only to the particular item calibrated. 	Q.N.
 This certificate shall not be reproduced, except in full without the written permisson of LES-CCL, Kasna, Greater Noida (U.P.) 	SHIVSHANKER SINGH
	(Chief Executive Officer)

ULR No.	CC22532100000561F		Page 2 of 2
Calibration Date	04.02.2021	Suggested Date of Next Calibration	03.02.2022
Certificate No.	LES-CCL/FF/PM/SC/958		

05. Calibration Results for Flow of Dry Gas Meter

S.No.	Test meter (DUC) Measured Flow (Ipm)	Reference True flow rate (Ipm)	Error (%)
1	16.78	16.541	1.445
2	16.79	16.546	1.475
3	16.84	16.571	1.623
4	16.77	16.531	1.446
5	16.77	16.525	1.483

Type A standard Uncertainty					
for repeated data (1-5)	± 0.0076	lpm			
Expanded uncertainty in Actual flow					
measurement, U (<i>k</i> =2)	± 0.9007	Ipm	±	5.72	% Rdg

Final Readings of Dry Gas Meter at the end of Calibration:529.4840 m³

Uncertainty Contributing factor :-

1. Repeatability (based on five measurement)

2.Uncertainty of master instruments

3. Uncertainty due to resolution of DUC

The evaluated Expanded Uncertainty in calibration at a coverage factor k = 2,

for degrees of freedom =⊷ and confidence level is 95 % for Normal distribution.

Calibration Place: Calibration done at M/s Prism Johnson Limited in workshop Tehsil - Rampur Baghelan, Distt. Satna ,(Madhya Pradesh)

Notes :-	Authorized De
1. Reference used are directly traceable to national standard through	Authorized By
unbroken chain of calibration .	
2. Results reported are valid at the time of and under the stated conditions of measurement	O.1
3. This Certificate refers only to the particular item calibrated.	talig
4 .This certificate shall not be reproduced, except in full without the written	SHIVSHANKER SINGH
permisson of LES-CCL, Kasna, Greater Noida (U.P.)	(Chief Executive Officer)

Gr. Noida Kasna

(A Division of Lata Envirotech Services)

K-307, UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.)

E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC225321000000560F	Calib. Field - Electro-Technical	Page 1 of 1
Certificate No.	LES-CCL/ET/TT/2101	Callb. Tield - Electio-Technical	ragerori
Calibration Date	05.02.2021	Suggested Date of Next Calibration	04.02.2022
Customer Name :-	M/s Prism Johnson Limited		
Address :-	(Cement Division: Unit - II)		
	Village - Mankahari, P.O Bathia,		
	Tehsil - Rampur Baghelan, Distt. S (Madhya Pradesh)	atna - 485111	
Reference :- S.R.F No	.: - 2020/929	Date: - 23.06.2020 Date of	Issue:- 06.02.2021

01. DUC Fitted in instrument

Name	Make	Model	SI.No.
Fine Particulate Sampler	Envirotech Instruments	APM - 550	722 - DTC - 2011

02. Details of (DUC)

Name	Time Totalizer	Environmental Conditions During Calibrati	
Make/Trade Mark	CE Germany	Temperature (°C)	25 ± 3
SI.No.	T - 722	Relative Humidity (%)	45 - 75
		B. Pressure (mmHg)	746.70

03. Standard Equipment used for calibration

Standard Equipment Name	Range	SI.No./ID.No.	Traceability
Digital Automatic Timer	10 Sec - 4 hrs	LES-CCL/R/2507	CCTPL, Noida (U.P)
Calibration Certifica	te No.	Calibration Date	Valid Up to
CCTPL/TM/0170/	01	30.10.2020	29.10.2021

04. Calibration Procedure LES-CCL/WI/31/ET/01

05. Calibration Results :

DUC has been calibrated for following Parameter (S) ranges (S)

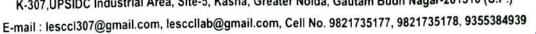
S.No.	Displayed Value on DUC Hrs(Min)	Reference Time (Min)	Error (%)	Expanded Uncertainty at 95 % of Confidence level (k =2) (%)
1	0.25 (15.0 Min) (Final Readings of TTR at the end of Calibration: 1167.99 hrs)	15.0076	-0.05	± 3.329 %

Uncertainty Contributing Factor :-

1. Repeatability (based on five measurement)

2. Uncertainty of master instruments

3. Uncertainty due to resolution of DUC


The evaluated Expanded Uncertainty in calibration at a coverage factor k = 2, for degrees of freedom = ∞ and confidence level is 95 % for Normal distribution.

level is 95 % for Normal distribution.		
Notes :-		Authorized By
1. Reference used are directly traceable to national standard through	2	Authorized By
unbroken chain of calibration .	Galibrar	
2. Results reported are valid at the time of and under the stated conditions of measurement	401 00	Out
3. This Certificate refers only to the particular item calibrated.	12/ 18/	realized
4 .This certificate shall not be reproduced, except in full without the written	S Gr. Noida	SHIVSHANKER SINGH
permisson of LES-CCL Kasna, Greater Noida (U.P.)	5	(Chief Executive Officer)
	Kasna	

(A Division of Lata Envirotech Services)

K-307, UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.)

Website : www.lesccllab.com

CC-2253

CALIBRATION CERTIFICATE

ULR No.	CC2253210000005	559F Calib. Field - Fluid Flow	Page 1 of 2
Certificate No.	LES-CCL/FF/PM/SC/957	Calib. Tield - Tidid Tiow	rugererz
Calibration Date	04.02.2021	Suggested Date of Next Calibration	03.02.2022
Customer Name :- Address :-	M/s Prism Johnson Limit (Cement Division: Unit - I Village - Mankahari, P.O I Tehsil - Rampur Baghela (Madhya Pradesh)	l) Bathia,	
Reference :- S.R.F. No	2020/929	Date :- 23.06.2020 Date of Issue:	- 06.02.2021

01. DUC Fitted in instrument

Name	Make	Model	SI.No.
ine Particulate Sampler	Envirotech Instruments	APM - 550	722 - DTC - 2011

02. Details of DUC

Name	Dry Gas Meter	Environmental Conditions During Calibrati	
Make/Model	Itron / G1.6	Temperature (°C)	25 ± 10
SI.No.	110121364	Relative Humidity (%)	45-75
Cal. Range	16.67 lpm (±5%)	Baromatric Pressure (mmHg)	746.10

03. Standard Equipment used for calibration

SI.No.	Standard Equipment Name	Range	SI.No. / ID.No.	Traceability
1	Gas Flow Calibrator	0.5 -50 lpm	3319 / LES-CCL/R/4902	LES - CCL, Gr. Noida
2	Digital Stop Watch	10 Sec 59 min	LES-CCL/R/14510	LES - CCL, Gr. Noida
SI.No.	Certificate No.	Calibration	Date	Valid Up to
1	LES-CCL/FF/RF/2216	28.07.20	20	27.07.2021
2	LES-CCL/ET/SW/404	28.09.20	20	27.09.2021

04. Calibration Procedure :- LES-CCL/WI/31/FF/SC/07

Remark : 1. Refer page 2 of 2 for Calibration Results

2. The Flowrate has been Referenced to standard Temperature (20 °C) and Pressure (760 mmHg Absolute) Condition.

Notes :-	Authorized By
1. Reference used are directly traceable to national standard through	Authorized By
unbroken chain of calibration . 2. Results reported are valid at the time of and under the stated conditions of measurement	
3. This Certificate refers only to the particular item calibrated.	- puly
4 .This certificate shall not be reproduced, except in full without the written	SHIVSHANKER SINGH
permisson of LES-CCL, Kasna, Greater Noida (U.P.)	(Chief Executive Officer)

ULR No.	CC22532100000)559F	Page 2 of 2
Calibration Date	04.02.2021	Suggested Date of Next Calibration	03.02.2022
Certificate No.	LES-CCL/FF/PM/SC/957		

05. Calibration Results for Flow of Dry Gas Meter

S.No.	Test meter (DUC) Measured Flow (lpm)	Reference True flow rate (Ipm)	Error (%)
1	16.45	16.891	-2.611
2	16.44	16.860	-2.491
3	16.49	16.863	-2.212
4	16.52	16.840	-1.900
5	16.44	16.850	-2.433

Type A standard Uncertainty for repeated data (1-5)	± 0.0082	lpm			
Expanded uncertainty in Actual flow measurement, U (<i>k</i> =2)	± 0.9180	lpm	±	5.72	% Rdg

Final Readings of Dry Gas Meter at the end of Calibration: 656.4740 m³

Uncertainty Contributing factor :-

1. Repeatability (based on five measurement)

2. Uncertainty of master instruments

3. Uncertainty due to resolution of DUC

The evaluated Expanded Uncertainty in calibration at a coverage factor k = 2,

for degrees of freedom =∞ and confidence level is 95 % for Normal distribution.

Calibration Place: Calibration done at M/s Prism Johnson Limited in workshop Tehsil - Rampur Baghelan, Distt. Satna ,(Madhya Pradesh)

Notes :-	Authorized By
1. Reference used are directly traceable to national standard through	Authonized By
unbroken chain of calibration .	
2. Results reported are valid at the time of and under the stated conditions of measurement	Belig
3. This Certificate refers only to the particular item calibrated.	1 Stolard
4 .This certificate shall not be reproduced, except in full without the written	SHIVSHANKER SINGH
permisson of LES-CCL, Kasna, Greater Noida (U.P.)	(Chief Executive Officer)

(A Division of Lata Envirotech Services)

K-307, UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.)

E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC225321000000558F		1		
Certificate No.	LES-CCL/ET/TT/2100	Collib Elold Electre Tester I			
Calibration Date	05.02.2021	Suggested Date of Next Calibration	04 02 2022		
Customer Name :-	M/s Prism Johnson Limited		04.02.2022		
Address :-	(Cement Division: Unit - II)				
	Village - Mankahari, P.O Bathia,				
	Tehsil - Rampur Baghelan, Distt. (Madhya Pradesh)	Satna - 485111			
Reference :- S.R.F No	.: - 2020/929	Date: - 23.06.2020 Date of	Issue:- 06.02.2021		

01. DUC Fitted in instrument

Name	Make	Model	SI.No.
Fine Particulate Sampler	Envirotech Instruments	APM - 550	721 - DTC - 2011

02. Details of (DUC)

Name	Time Totalizer	Environmental Conditions During Calibr		
Make/Trade Mark	CE Germany			
SI.No.	T - 721	Temperature (°C)	25 ± 3	
1	1-121	Relative Humidity (%)	45 - 75	
		B. Pressure (mmHg)	746.70	

03. Standard Equipment used for calibration

Standard Equipment Name	Range	SI.No./ID.No.	Traceability
Digital Automatic Timer	10 Sec - 4 hrs	LES-CCL/R/2507	CCTPL, Noida (U.P)
Calibration Certificate No. CCTPL/TM/0170/01		Calibration Date	Valid Up to
		30.10.2020	29.10.2021

04. Calibration Procedure LES-CCL/WI/31/ET/01

05. Calibration Results :

DUC has been calibrated for following Parameter (S) ranges (S)

S.No.	Displayed Value on DUC Hrs(Min)	Reference Time (Min)	Error (%)	Expanded Uncertainty at 95 % of Confidence level (k =2) (%)
1	0.25 (15.0 Min) (Final Readings of TTR at the end of Calibration: 937.05 hrs)	15.0076	-0.05	± 3.329 %

Uncertainty Contributing Factor :-

1. Repeatability (based on five measurement)

2. Uncertainty of master instruments

3. Uncertainty due to resolution of DUC

The evaluated Expanded Uncertainty in calibration at a coverage factor k = 2, for degrees of freedom = ∞ and confidence level is 95 % for Normal distribution.

Notes :- 1. Reference used are directly traceable to national standard through unbroken chain of calibration .	Authorized By
2. Results reported are valid at the time of and under the stated conditions of measurement 3. This Certificate refers only to the particular item calibrated. 4. This certificate shall not be reproduced, except in full without the written permisson of LES-CCL.Kasna, Greater Noida (U.P.) Gr. Noida	SHIVSHANKER SINGH (Chief Executive Officer)

(A Division of Lata Envirotech Services)

K-307,UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.)

E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC225321000005	557F Calib. Field	Calib. Field - Fluid Flow Page	
Certificate No.	LES-CCL/FF/PM/SC/956			
Calibration Date	04.02.2021	Suggested Date of Next Calibration 03.02.2022		
Customer Name :- Address :-	M/s Prism Johnson Limit (Cement Division: Unit - I Village - Mankahari, P.O E Tehsil - Rampur Baghelar (Madhya Pradesh)	l) 3athia,		
Reference :- S.R.F. No	2020/929	Date :- 23.06.2020	e :- 23.06.2020 Date of Issue:- 06.02.2021	

01. DUC Fitted in instrument

Name	Make	Model	SI.No.
Fine Particulate Sampler	Envirotech Instruments	APM - 550	721 - DTC - 2011

02. Details of DUC

Name	Dry Gas Meter	Dry Gas Meter Environmental Conditions Duri		
Make/Model	Itron / G1.6	Temperature (°C)	25 ± 10	
SI.No.	110121362	Relative Humidity (%)	45-75	
Cal. Range	16.67 lpm (±5%)	Baromatric Pressure (mmHg)	746.10	

03. Standard Equipment used for calibration

SI.No.	Standard Equipment Name	Range	SI.No. / ID.No.	Traceability	
1	Gas Flow Calibrator	0.5 -50 lpm	3319 / LES-CCL/R/4902	LES - CCL, Gr. Noida	
2	Digital Stop Watch	10 Sec 59 min	LES-CCL/R/14510	LES - CCL, Gr. Noida	
SI.No.	Certificate No.	Calibration	Date	Valid Up to	
1	LES-CCL/FF/RF/2216	28.07.20	0 27.07.2021		
2	LES-CCL/ET/SW/404	28.09.20	020 27.09.2021		

04. Calibration Procedure :- LES-CCL/WI/31/FF/SC/07

Remark : 1. Refer page 2 of 2 for Calibration Results

2. The Flowrate has been Referenced to standard Temperature (20 *C) and Pressure (760 mmHg Absolute) Condition.

Notes :-		Authorized By
1. Reference used are directly traceable to national standard through		Authonized By
unbroken chain of calibration .		
2. Results reported are valid at the time of and under the stated conditions of m	neasurement	0.1
3. This Certificate refers only to the particular item calibrated.	401 Vacuation	Soller
4 .This certificate shall not be reproduced, except in full without the written	entre	SHIVSHANKER SINGH
permisson of LES-CCL, Kasna, Greater Noida (U.P.)	S Gr. Noida	(Chief Executive Officer)

Kasna

ULR No.	CC225321000000557F		Page 2 of 2
Calibration Date	04.02.2021	Suggested Date of Next Calibration	
Certificate No.	LES-CCL/FF/PM/SC/956	50	00.01.1011

05. Calibration Results for Flow of Dry Gas Meter

S.No.	Test meter (DUC) Measured Flow (lpm)	Reference True flow rate (Ipm)	Error (%)
1	16.71	16.681	0.174
2	16.69	16.670	0.120
3	16.76	16.675	0.510
4	16.77	16.672	0.588
5	16.71	16.662	0.288

for repeated data (1-5)	± 0.0030	lpm			
Expanded uncertainty in Actual flow					
measurement, U (k=2)	± 0.9077	Ipm	÷	5.72	% Rda

Final Readings of Dry Gas Meter at the end of Calibration: 1179.2540 m³

Uncertainty Contributing factor :-

1. Repeatability (based on five measurement)

2. Uncertainty of master instruments

3. Uncertainty due to resolution of DUC

The evaluated Expanded Uncertainty in calibration at a coverage factor k = 2,

for degrees of freedom =•• and confidence level is 95 % for Normal distribution.

Calibration Place: Calibration done at M/s Prism Johnson Limited in workshop Tehsil - Rampur Baghelan, Distt. Satna ,(Madhya Pradesh)

Notes :-	A
1. Reference used are directly traceable to national standard through	Authorized By
unbroken chain of calibration . 2. Results reported are valid at the time of and under the stated conditions of measurement	\mathcal{O}
3. This Certificate refers only to the particular item calibrated.	Schly
4. This certificate shall not be reproduced, except in full without the written	SHIVSHANKER SINGH
permisson of LES-CCL, Kasna, Greater Noida (U.P.)	(Chief Executive Officer)

(A Division of Lata Envirotech Services)

K-307, UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.)

E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No. CC225321000000556F			1			
Certificate No.	LES-CCL/ET/TT/2099	Calib. Field - Electro-Technical Pa				
Calibration Date	05.02.2021	Suggested Date of Next Calibration	04 02 2022			
Customer Name :-	M/s Prism Johnson Limited		C HOLIZOLL			
Address :-	(Cement Division: Unit - II)					
	Village - Mankahari, P.O Bathia,					
	Tehsil - Rampur Baghelan, Distt. S (Madhya Pradesh)	Satna - 485111				
Reference :- S.R.F No	.: - 2020/929	Date: - 23.06.2020 Date of	Issue:- 06.02.2021			

01. DUC Fitted in instrument

Name	Make	Model	SI.No.	
Fine Particulate Sampler	Envirotech Instruments	APM - 550	723 - DTC - 2011	

02. Details of (DUC)

Name	Time Totalizer	Environmental Conditions During Calib		
Make/Trade Mark	CE Germany	Temperature (°C)	NUMBER OF STREET	
SI.No.	T - 723	Relative Humidity (%)	25 ± 3 45 - 75	
		B. Pressure (mmHg)	746.70	

03. Standard Equipment used for calibration

Standard Equipment Name	Range	SI.No./ID.No.	Traceability	
Digital Automatic Timer	10 Sec - 4 hrs	LES-CCL/R/2507	CCTPL, Noida (U.P)	
Calibration Certificate No.		Calibration Date	Valid Up to	
CCTPL/TM/0170/01		30.10.2020	29.10.2021	

04. Calibration Procedure LES-CCL/WI/31/ET/01

05. Calibration Results :

DUC has been calibrated for following Parameter (S) ranges (S)

S.No.	Displayed Value on DUC Hrs(Min)	Reference Time (Min)	Error (%)	Expanded Uncertainty at 95 % of Confidence level (k =2) (%)
1	0.25 (15.0 Min) (Final Readings of TTR at the end of Calibration: 1254.60 hrs)	15.0016	-0.01	± 3.329 %

Uncertainty Contributing Factor :-

1. Repeatability (based on five measurement)

2. Uncertainty of master instruments

3. Uncertainty due to resolution of DUC

The evaluated Expanded Uncertainty in calibration at a coverage factor k = 2, for degrees of freedom =•• and confidence level is 95 % for Normal distribution.

Notes :-1. Reference used are directly traceable to national standard through Authorized By For Galibran unbroken chain of calibration . 2. Results reported are valid at the time of and under the stated conditions of measureme S 3. This Certificate refers only to the particular item calibrated. S 4 .This certificate shall not be reproduced, except in full without the written Gr. Noida SHIVE HANKER SINGH permisson of LES-CCL.Kasna, Greater Noida (U.P.) (Chief Executive Officer) Kasna

, LATA ENVIROTECH SERVICES - CENTRE FOR CALIBRATION LABORATORY (A Division of Lata Envirotech Services)

K-307,UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.) E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC22532100000	0555F		Page 1 of 2
Certificate No.	LES-CCL/FF/PM/SC/95	5 Calib. Fie	Calib. Field - Fluid Flow	
Calibration Date	04.02.2021	Suggested Date	of Next Calibration	03.02.2022
Customer Name :- Address :-	M/s Prism Johnson Lir (Cement Division: Unit Village - Mankahari, P. Tehsil - Rampur Baghe (Madhya Pradesh)	: - II)		
Reference :- S.R.F. No	2020/929	Date :- 23.06.2020	Date of Issue:-	

01. DUC Fitted in instrument

Name	Make	Model	SI.No.
Fine Particulate Sampler	Envirotech Instruments	APM - 550	723 - DTC - 2011

02. Details of DUC

Name	Dry Gas Meter	Environmental Conditions During Cali		
Make/Model	Itron / G1.6	Temperature (°C)	25 ± 10	
SI.No.	110121361	Relative Humidity (%)	45-75	
Cal. Range	16.67 lpm (±5%)	Baromatric Pressure (mmHg)	746.10	

03. Standard Equipment used for calibration

SI.No.	Standard Equipment Name	Range	SI.No. / ID.No.	Traceability
1	Gas Flow Calibrator	0.5 -50 lpm	3319 / LES-CCL/R/4902	LES - CCL, Gr. Noida
2	Digital Stop Watch	10 Sec 59 min	LES-CCL/R/14510	LES - CCL, Gr. Noida
SI.No.	Certificate No.	Calibration Date		Valid Up to
1	LES-CCL/FF/RF/2216	28.07.2020		27.07.2021
2	LES-CCL/ET/SW/404	28.09.20	20	27.09.2021

04. Calibration Procedure :- LES-CCL/WI/31/FF/SC/07

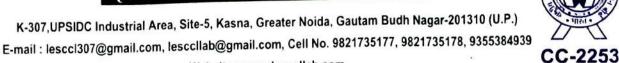
Remark : 1.Refer page 2 of 2 for Calibration Results

2. The Flowrate has been Referenced to standard Temperature (20 *C) and Pressure (760 mmHg Absolute) Condition.

Notes :-	
1. Reference used are directly traceable to national standard through	Authorized By
unbroken chain of calibration .	-
2. Results reported are valid at the time of and under the stated conditions of measurement	0.1
3. This Certificate refers only to the particular item calibrated.	spalla
4 .This certificate shall not be reproduced, except in full without the written	
permisson of LES-CCL, Kasna, Greater Noida (U.P.)	SHIVSHANKER SINGH
	(Chief Executive Officer)

Gr. Noida

Kasna


ULR No.	CC225321000000555F		Page 2 of 2
Calibration Date	04.02.2021	Suggested Date of Next Calibration	03.02.2022
Certificate No.	LES-CCL/FF/PM/SC/955		

05. Calibration Results for Flow of Dry Gas Meter

S.No.	Test meter (DUC) Measured Flow (lpm)	Reference True flow rate (Ipm)	e Error (%)
1	16.24	16.420	-1.096
2	16.25	16.422	-1.047
3	16.24	16.440	-1.217
4	16.24	16.450	-1.277
5	16.18	16.456	-1.677
Uncertainty C Repeatability Uncertainty d Uncertainty d The evaluated or degrees of t	measurement, U (k = 2) Final Readings of Dry Gas Mete Contributing factor :- y (based on five measurement) of master instruments due to resolution of DUC Expanded Uncertainty in calibration a freedom =∞ and confidence level is 99 ace: Calibration done at M/s Prism	t a coverage factor $k = 2$, 5 % for Normal distribution.	n: 1041.700 m³ op Tehsil - Rampur Baghelan, Distt. Satna ,(Madhya Pradesh)
Notes :-	sed are directly traceable to national s	to a doubt the sure h	Authorized By

(A Division of Lata Envirotech Services)

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No. Certificate No.	CC225321 LES-CCL/FF/P		Calib. Field - Fluid Flow	Page 1 of 2
Calibration Date	05.02.2021	Sugg	ested Date of Next Calibration	04.02.2022
Customer Name :- Address :-		ion: Unit - II) ahari, P.O. Bathia, ur Baghelan, Distt. Satna		
Reference :- S.R.F. No.	2020/929	Date :- 21.01.2021	Date of Issue:-	08.02.2021

01. Details of DUC

Name	S -TYPE PITOT TUBE	Environmental Conditions During Calibration	on
Length	0.6 mtr. + Extn.	Temperature (°C)	25 ± 3
SI.No.	V - 102	Relative Humidity (%)	45-75
Cal. Range	3 - 20 m/sec	Baromatric Pressure (mmHg)	746.45

02. Standard Equipment used for calibration

SI.No.	Standard Equipment Name	Range	SI.No./ID.No.	Traceability
1	S Type Pitot Tube	3 to 25 m/s	V626 / LES-CCL/R/12101	FCRI, Palakkad
2	Digita Manometer	0 - 500 mmwc	VEMN1612014 / LES-CCL/R/2514	LES-CCL, Gr. Noida
3	Dig.Temp.Indicator With Sensor	0 - 50 °C	T- 01 /LES -CCL/R/15301	BELZ, Faridabad
<u> </u>	Certificate No.		Calibration Date	Valid Up to
1	CAW 648 2009 070	15.09.2020		NM
2	LES-CCL/MECH/PI/471	30.01.2021		29.01.2022
3	30023673		18.06.2020	17.06.2021

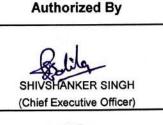
03. Calibration Procedure :- LES-0

LES-CCL/WI/31/FF/06

Remark 1. Refer page 2 of 2 for Calibration Results.

2. The Velocity has been Referenced to standard Temperature (20 °C) and Pressure (760 mmHg Absolute) Condition.

Notes :-


1. Reference used are directly traceable to national standard through

unbroken chain of calibration .

2. Results reported are valid at the time of and under the stated conditions of measurement

3. This Certificate refers only to the particular item calibrated.

4 .This certificate shall not be reproduced, except in full without the written

ULR No.	CC225321000000575F		Page 2 of 2
Calibration Date	05.02.2021	Suggested Date of Next Calibration	04.02.2022
Certificate No.	LES-CCL/FF/PT/693		

04. CALIBRATION OBSERVATIONS AND RESULTS FOR S - TYPE PITOT TUBE

S.No.	Standard 'S' Type Pitot Tube K = 0.8826		'S' Type Pitot Tube (DUC)	
	Dynamic Pressure (mmwc)	Air Velocity (m/s)	Dynamic Pressure (mmwc)	Factor K
1	0.87	3.321	0.8	0.9441
2a	6.21		5.7	
2b	6.22		5.8	
2c	6.24	8.918	5.7	0.9163
2d	6.26		5.9	
2e	6.28		5.8	
2f	6.29		5.9	1
3	12.77	12.746	12.7	0.8861
4	23.26	17.204	22.7	0.8928
5	30.77	19.787	30.4	0.8879
			Averaged Coefficient (K)	0.9054

Remark : The reading of dynamic pressure represents the mean of 6 reading.

Type A standard Uncertainty Repeted Data Srial No. (2a to 2f)	±	0.0095 m/s			
Expanded uncertainty in Actual flow					
measurement at 95 % calibration at a coverage factor (k=2)	±	0.1988 m/s	or	ŧ	2.6 % Rdg

Uncertainty Contributing factor :-

1.Repeatability (based on three measurement)

2. Uncertainty of master instruments

3. Resulation Of DUC

The evaluated Expanded Uncertainty in calibration at a coverage factor k = 2,

for degrees of freedom =∞ and confidence level is 95 % for Normal distribution.

Notes :-

1. Reference used are directly traceable to national standard through

unbroken chain of calibration .

2. Results reported are valid at the time of and under the stated conditions of measurement

3. This Certificate refers only to the particular item calibrated.

4 .This certificate shall not be reproduced, except in full without the written

permisson of LES-CCL.Kasna, Greater Noida (U.P.)

Authorized By

LATA ENVIROTECH SERVICES - CENTRE FOR CALIBRATION LABORATORY (A Division of Lata Envirotech Services)

K-307, UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.)

E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

CC-2253

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC225321	000000574F		
Certificate N	o. LES-CCL/TH/T	P/420 Ca	ibration Field - Thermal	Page 1 of 2
Calibration D	ate 05.02.2021	Sugges	ted Date of Next Calibration	04 02 2022
Address :-	M/s Prism Johnson Limito (Cement Division: Unit - II Village - Mankahari, P.O. Tehsil - Rampur Baghelar (Madhya Pradesh)	l) Bathia,		
Reference :- S.R.F. N	o. 2020/929	Date :- 25.06.2020	Date of Issue:-	06.02.2021

01. DUC Fitted in instrument

Name	Make	Model	SI.No.
Stack Sampler	Vayubodhan	VSS - 1	623 - DTG - 09

02. Details of DUC

Name	Thermocouple with Temperature Indicator	Environmental Conditions Duri	ng Calibration
Make/Trade Mark	Audiotronics	Temperature(°C)	25 ± 3
SI.No.	TP - 623	Relative Humidity %	45 -75
Cal. Range	50.0004-	B. pressure (mmHg)	746.45

03. Standard Equipment used for calibration

Standard Equipment Name	Range	SI.No.	Traceability
Digital Thermometer with R - Type T/C	0 - 1600 °C	YD5002383	BELZ, Faridabad
Dry Block Furnance	50 - 650 °C	1/952-14	BELZ, Faridabad
Certificate No.	Calibratio	n Date	Valid Up to
30023671	18.06.2	2020	17.06.2021
6160982	25.05.2	016	NM

04. Calibration Procedure :- LES-CCL/WI/31/TH/01 Remark : Refer page 2 of 2 for Calibration Results.

and a set of page 2 of 2 for Galibration Acoulds.

Notes :-	
. Reference used are directly traceable to national standard through	Authorized By
unbroken chain of calibration .	
2. Results reported are valid at the time of and under the stated conditions of measurement	
This Certificate refers only to the particular item calibrated.	(sella
This certificate shall not be reproduced, except in full without the written	
permisson of LES-CCL, kasna, Greater Noida (U.P.)	SHIV SHANKAR SINGH (Chief Executive Officer)

ULR No.	CC225321000000574	F	Page2 of 2
Calibration Date	05.02.2021	Suggested Date of Next Calibration	04.02.2022
Certificate No.	LES-CCL/TH/TP/420		04.02.2022

05. Corrected Calibration Results for Thermocouple with Temperature Indicator

S.No.	Device Under Calibration (^O C)	Std.Reading (^o C)	Error FS (%)	Calibration Factor	Expanded Uncertainty at 95 % of Confidence level (k =2) (°C)
1	46	49.0	-0.50	1.065	± 1.34
2	95	98.2	-0.53	1.033	± 1.07
3	194	199.8	-0.96	1.030	± 1.07
4	296	301.0	-0.83	1.017	± 2.13
5	395	399.5	-0.74	1.011	± 2.65
6	494	500.8	-1.13	1.014	± 3.21
7	594	597.0	-0.50	1.005	± 3.21

Remark : The Reported value is Average of ten readings.

Uncertainty Contributing Factor :-

1.Repeatability (based on ten measurement)

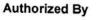
2. Uncertainty of Master Instruments

3.Resulation of DUC

4.Drift of Master Thermocouple

The evaluated Expanded Uncertainty in calibration at a coverage factor k = 2, for degrees of freedom = ∞ and confidence level is 95 % for Normal distribution.

Notes :-


1. Reference used are directly traceable to national standard through

unbroken chain of calibration .

2. Results reported are valid at the time of and under the stated conditions of measurement

3. This Certificate refers only to the particular item calibrated.

 This certificate shall not be reproduced, except in full without the written permisson of LES-CCL., Kasna, Greater Noida (U.P.)

(A Division of Lata Envirotech Services)

K-307.UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.)

E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No	. CC2253	21000000573F	Calibration Field -	l
Certificate I		IECH/VG/422	Mechanical	Page 1 of 2
Calibration D			Suggested Date of Next Calibration	04 02 2022
Customer Name :- Address :-	(Madhya Pradesh)	it - II)		
Reference :- S.R.F.	Io . 2020/1075	Date :- 12.12.2020	Date of Issue:- 13.01.2	2021

01. DUC Fitted in Instrument

Name	Make	Model	SI.No.
Stack Sampler	Vayubodhan	VSS - 1	623 - DTG - 09

02. Details of DUC

Name	Vacuum Gauge (GAS) / (SPM)	Environmental Conditions Du	ring Calibration
Make	Manometer	Temperature(°C)	25 ± 3
SI.No.	GVG - 623 / SVG - 623	Relative Humidity (%)	45 -75
Cal. Range	80 -500 mmHg	B. Pressure (mmHg)	746.45

03. Standard Equipment used for calibration

Standard Equipment Name	Range	SI.No. / ID.No.	Traceability
Digital Vacuum Gauge	-1.0 to 2 bar	VEM1503079 /	BELZ, Faridabad
		LES-CCL/R/2504	
Certificate No.	Calibra	tion Date	Valid Up to
40039019	16.0	6.2020	15.06.2021

04. Calibration Procedure :- LES-CCL/WI/31/MECH/02

Remark : Refer page 2 of 2 for Calibration Results

Notes :-	
1. Reference used are directly traceable to national standard through	Authorized By
unbroken chain of calibration .	
2 Results reported are valid at the time of and under the stated conditions of measure	ment Oll
3 This Certificate refers only to the particular item calibrated.	Stably
4 This certificate shall not be reproduced, except in full without the written	SHIV SHANKAR SINGH
permisson of LES-CCL. Greater Noida (U.P.)	(Chief Executive Officer)

ULR No.	CC22532100000	CC22532100000573F	
Calibration Date	05.02.2021	Suggested Date of Next Calibration	04.02.2022
Certificate No.	LES-CCL/MECH/VG/422		

05. Corrected Calibration Results for Vacuum Gauge (SI. No. SVG- 623)

Set DUC	CYC	LE 1	CYCLE 2		CYC	LE 3	Standard	Error	Ue.
Value (mmHg)	UP (mmHg)	DOWN (mmHg)	UP (mmHg)	DOWN (mmHg)	UP (mmHg)	DOWN (mmHg)	Avg.Reading (mmHg)	% FS	± (bar)
80	73.0	73.1	74.6	74.9	74.6	73.7	74.0	1.01	0.060
100	92.3	92.0	96.8	94.6	94.6	97.3	94.9	0.67	0.060
200	182.2	182.1	181.9	182.2	182.9	183.7	182.5	2.31	0.060
300	297.2	298.7	297.4	298.4	299.9	298.4	298.3	0.22	0.060
400	396.6	396.3	396.9	396.3	396.3	396.9	396.5	0.45	0.060
480	497.3	500.0	500.2	499.5	501.5	498.2	499.4	-2.56	0.060

06. Corrected Calibration Results for Vacuum Gauge (SI. No. GVG - 623)

Set DUC	CYC	CYCLE 1		CYCLE 2		LE 3	Standard	Error	Ue.
Value (mmHg)	UP (mmHg)	DOWN (mmHg)	UP (mmHg)	DOWN (mmHg)	UP (mmHg)	DOWN (mmHg)	Avg.Reading (mmHg)	% FS	± (bar)
80	73.2	73.1	73.0	72.4	74.6	74.8	73.3	1.11	0.060
100	83.8	83.7	86.0	84.6	89.0	87.5	94.9	0.85	0.060
200	193.9	195.5	193.6	191.1	195.4	87.5	194.0	1.01	0.060
300	296.9	295.7	297.7	297.0	195.4	293.9	295.9	0.53	0.060
400	406.5	406.2	408.9	475.1	479.5	407.0	407.3	-0.96	0.060
480	480.3	480.8	479.5	475.1	479.5	475.8	478.5	0.25	0.060

Remark : The reading of vacuum represents the Average of five reading

Uncertainty Contributing Factor 1. Repeatability (based on 3 Cycle) 2. Uncertainty of master instruments

3. Uncertainty due to resolution of DUC 4. Uncertainty due to hystersis,

The evaluated Expanded Uncertainty in calibration at a coverage factor k = 2, for degrees of freedom =~ and

confidence level is 95 % for Normal distribution.

 Notes : Authorized By

 1. Reference used are directly traceable to national standard through unbroken chain of calibration .
 Authorized By

 2. Results reported are valid at the time of and under the stated conditions of measurement
 Image: Condition of the particular item calibrated.

 3. This Certificate refers only to the particular item calibrated.
 SHIV SHANKAR SINGH (Chief Executive Officer)

(A Division of Lata Envirotech Services)

K-307, UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.) E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

CC-2253

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC2253210000	000572F	lib. Field - Mechanical	Page 1 of 2	
Certificate No.	LES-CCL/MECH/PI/4	68 Ca	no. i leiu - mechanicai		
Calibration Date	05.02.2021 Suggested Date of Next Calibration		04.02.2022		
Address :-	M/s Prism Johnson I (Cement Division: U Village - Mankahari, Tehsil - Rampur Bag (Madhya Pradesh)	nit - II)			
Reference :- S.R.F. N	o. 2020/929	Date :- 23.06.2020	Date of Issue:-	06.02.2021	

01. DUC Fitted in Instrument

Name	Make	Model	SI.No.
Stack Sampler	Vayubodhan	VSS - 1	623 - DTG - 09

02. Details of DUC

Name	Pressure Indicator	Environmental Conditions During Ca	libration
Make	Testo	Temperature (°C)	25 ± 3
Model	Testo- 510	Relative Humidity (%)	45-75
SI.No.	PI - 623	Baromatric Pressure (mmHg)	746.45
Cal. Range	0 - 1000 mmH ₂ O		

03. Standard Equipment used for calibration

Standard Equipment Name	Range	SI.No./I.D.No.	Traceability
1. Digital Pressure Gauge	0 - 2000 mmWC	VEM1503080/LES- CCL/R/2503	BELZ, Faridabad
Certificate No.	Calibration Date		Valid Up to
40039020	16.06.2020		15.06.2021

04. Calibration Procedure :-

LES-CCL/WI/31/MECH/ 01

Remark : Refer page 2 of 2 for Calibration Results

Notes :-	Authorized By
 Reference used are directly traceable to national standard through 	
unbroken chain of calibration .	
Results reported are valid at the time of and under the stated conditions	
of measurement	(selite
This Certificate refers only to the particular item calibrated.	Butter
4 .This certificate shall not be reproduced, except in full without the written	SHIVSHANKER SINGH
permisson of LES-CCL, Kasna, Greater Noida (U.P.)	(Chief Executive Officer)

ULR No.	CC225321000000572F		Page 2 of 2
Calibration Date	05.02.2021	Suggested Date of Next Calibration	04.02.2022
Certificate No.	LES-CCL/MECH/PI/468		

05. Corrected Calibration Results for Pressure Indicator

Set (DUC)	CYC	LE 1	CYC	LE 2	CYC	LE 3	Standard	Error		anded
Value	UP	DOWN	UP	DOWN	UP	DOWN	Avg.Rdg.	%	± Und	certainty
(mmH ₂ 0)	(mmH ₂ 0)	(mmH ₂ 0)	(mmH₂0)	(mmH₂0)	(mmH₂0)	(mmH ₂ 0)	(mmH₂0)	(FS)	(Pa)	(mmH ₂ 0)
1.0	1.0	1.4	1.2	1.1	1.4	1.3	1.2	-0.02	10.9	1.11
10.0	9.4	9.3	9.3	9.4	9.4	9.3	9.4	0.06	10.9	1.11
			101.7	101.9	101.9	101.9	101.8	-0.18	10.9	1.11
100.0	101.7	101.8	199.9	199.7	199.8	199.8	199.8	0.02	10.9	1.11
200.0	199.7	200.0	399.1	398.7	398.7	398.7	399.0	0.10	10.9	1.11
400.0	399.2	398.7		800.9	800.9	800.9	800.9	-0.09	10.9	1.11
800.0	800.7	801.0	801.1	999.1	999.2	998.5	998.6	0.15	10.9	1.11
1000.0	999.4	999.2	999.3	999.1	999.2	555.5	000.0			

Remark : The reading of Pressure represents the mean of six reading

Uncertainty Contributing Factors:-

1. Repeatability (based on 3 Cycles)

2. Uncertainty of master instruments

3. Uncertainty due to resolution of DUC

4. Uncertainty due to hystersis

The evaluated Expanded Uncertainty in calibration at a coverage factor k = 2, for degrees of freedom =• and

confidence level is 95 % for Normal distribution.

Notes :-

Notes :-	Authorized By
1. Reference used are directly traceable to national standard through	
unbroken chain of calibration .	
Results reported are valid at the time of and under the stated conditions	
of measurement	loo lis
3. This Certificate refers only to the particular item calibrated.	Legelle
4 .This certificate shall not be reproduced, except in full without the written	SHIVSHANKER SINGH
permisson of LES-CCL, Kasna, Greater Noida (U.P.)	(Chief Executive Officer)

(A Division of Lata Envirotech Services)

K-307, UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.)

E-mail : lesccl307@gmail.com, lesccllab@gmail.com, Cell No. 9821735177, 9821735178, 9355384939

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

ULR No.	CC22532100	00000571F	b. Field - Electro-Technical	Page 1 of 1
Certificate No.	LES-CCL/ET/SW/	508		
Calibration Date	05.02.2021 Suggested Date of Next Calibration 0		04.02.2022	
Customer Name :-	M/s Prism Johns	on Limited		
Address :-	(Cement Division Village - Mankah Tehsil - Rampur (Madhya Pradesh	ari, P.O. Bathia, Baghelan, Distt. Satna - 485	111	
Reference :- S.R.F. No.	2020/929	Date :- 23.06.2020	Date of Issue:-	- 06.02.2021

01. DUC Fitted in the Instruments

Name	Make	Model	SI.No.
Stack Sampler	Vayubodhan	VSS - 1	623 - DTG - 09

02. Details of DUC

Name	Stop watch	Environmental Conditions During Calibration	
SI.No.	SW - 623	Temperature (°C)	25 ± 3
Cal. Range	0 -15 min.	Relative Humidity (%)	45 - 75
		Baromatric Pressure (mmHg)	746.45

03. Standard Equipment used for calibration

Standard Equipment Name	Range	SI.No./ID.No.	Traceability
Digital Automatic Timer	10 Sec - 4 hrs	LES-CCL/R/2507	CCTPL, Noida (U.P)
Calibration Certificate No.	Cal	ibration Date	Valid Up to
CCTPL/TM/0170/01		30.10.2020	29.10.2021

04. Calibration Procedure : LES-CCL/WI/31/ET/02

05. Calibration Results :-

DUC has been calibrated for following Parameter (S) ranges (S)

S.No.	Displayed Value on DUC (min)	Standard reading Average five Measurements Time (min)	Error (%)	Expanded Uncertainty at 95 % of Confidence level (k =2) (%)
1	15.003	15.0084	-0.036	± 2.40

Uncertainty Contributing Factors :- 1. Repeatability (based on five measurements)

2. Uncertainty of master instruments 3. Resolation of DUC

The evaluated Expanded Uncertainty in calibration at a coverage factor k = 2, for degrees of freedom = ∞ and confidence level is 95 % for Normal distribution.

Notes :-

- Reference used are directly traceable to national standard through unbroken chain of calibration.
- Results reported are valid at the time of and under the stated conditions of measurement
- 3. This Certificate refers only to the particular item calibrated.

4 This certificate shall not be reproduced, except in full without the written

permisson of LES Instruments - CCL, Kasna, Greater Noida (U.P.)

Authorized By

(A Division of Lata Envirotech Services)

K-307, UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.)

K-307,UPSIDC Industrial Area, Site-5, Rasha, Greater Holda, Gautan Budin Hugar Established Established Budin Hugar Established

Website : www.lesccllab.com

CALIBRATION CERTIFICATE

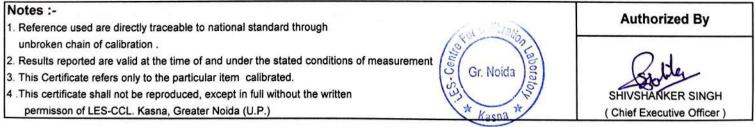
ULR No.	CC22532100	0000570F ca	alib. Field - Fluid Flow	Page 1 of 3
Certificate No.	LES-CCL/FF/RF/2			
Calibration Date	05.02.2021 Suggested Date of Next Calibration		04.02.2022	
Customer Name :- Address :-	M/s Prism Johnso (Cement Division Village - Mankaha Tehsil - Rampur E (Madhya Pradesh	: Unit - II) ri, P.O. Bathia, 3aghelan, Distt. Satna - 4851′	11	
Reference :- S.R.F. No.	2020/929	Date :- 23.06.2020	Date of Issue:-	06.02.2021

01. DUC Fitted in instrument

Name	Make	Model	SI.No.
Stack Sampler	Vayubodhan	VSS - 1	623 - DTG - 09

02. Details of DUC

Name	Rotameter	Environmental Conditions During Calibration	
Resolution	1.0 lpm	Temperature(°C)	25 ± 3
SI.No.	E9B090	Relative Humidity (%)	45 -75
Cal. Range	0 - 30 lpm	B. Pressure (mmHg)	746.45


03. Standard Equipment used for calibration

SI.No.	Standard Equipment Name	Range	Sr.No. / ID. No.	Traceability
1	Air Flow Calibrator	0.1 - 10.0 lpm	002-DTD-2015	CSIR, NPL, New Delhi
2	Digital Vacuum Indicator	0 - 75 mmHg	Sr. No. 03	LES-CCL, Gr. Noida
3	Digital Temp. Indicator	0-50°C	T- 02	BELZ, Faridabad
4	Orifice Flow Calibrator	11 to 100 lpm	001-DTD-2015	LES - CCL, Gr. Noida
SI.No.	Certificate No.	Calibrat	ion Date	Valid Up to
1	20100656/DI.08/C-044	14.10	.2020	14.10.2021
2	LES-CCL/MECH/PI/395	30.10	.2020	29.10.2021
3	30023672	18.06	.2020	17.06.2021
4	LES-CCL/FF/RF/1832	10.06	.2020	09.06.2021

04. Calibration Procedure :- LES-CCL/WI/31/FF/03 & 04

Remark : 1. Refer page 2 of 3 for Calibration Results and 3 of 3 for calibration curve

2. The Flowrate has been Referenced to Standard Temperature (20 °C) and Pressure (760 mmHg Absolute) Condition.

ULR No.	CC225321000000570	F	Page 2 of 3
Calibration Date		Suggested Date of Next Calibration	
Certificate No.	LES-CCL/FF/RF/2846		UT.UL.LULL

05. Calibration Results for Flow Rate of Rotameter

S.No.	Measured Flow Rate (DUC) lpm	Reference True Flow Rate (Ipm)	Error FS (%)	Calibration Factor
1	5.0	4.881	0.397	0.976
2	5.0	4.883	0.390	0.977
3	5.0	4.885	0.383	0.977
4	5.0	4.886	0.380	0.977
5	5.0	4.887	0.377	0.977
6	10.0	9.956	0.147	0.996
7	15.0	14.6	1.333	0.973
8	20.0	19.7	1.000	0.985
9	25.0	24.6	1.333	0.984
10	30.0	29.7	1.000	0.990
11	30.0	29.8	0.667	0.993
12	30.0	29.6	1.333	0.987
13	30.0	29.9	0.333	0.997
14	30.0	29.7	1.000	0.990

± 0.0097 lpm

±

±

0.0495 lpm

3.1 %Rdg

A. Type A standard Uncertainty

I. for repeated data (1-5) - 5 lpm

II. for repeated data (10-14) - 30 Ipm

B. Expanded uncertainty in Actual flow

measurement at 95% as a coverage factor k=2		
I. For 5 lpm	±	11.74 %Rdg

II. For 30 lpm

Uncertainty Contributing Factor :-

1.Repeatability (based on five measurements)

2. Uncertainty of master instruments,

3.Resolution of DUC

The evaluated Expanded Uncertainty in calibration at a coverage factor k = 2,

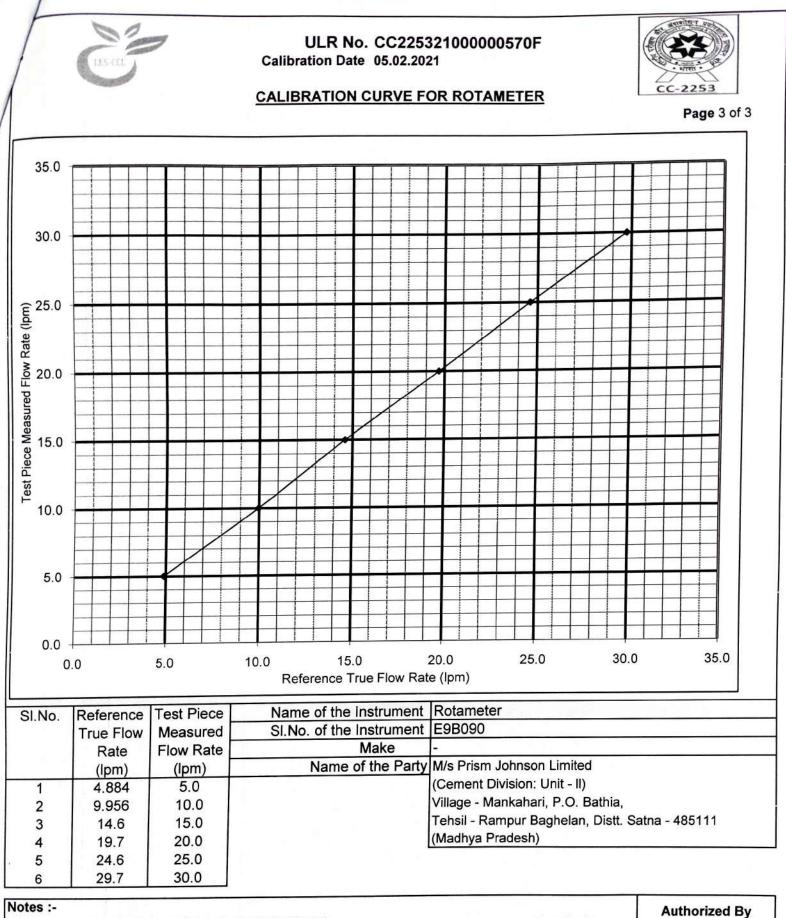
for degrees of freedom =∞ and confidence level is 95 % for Normal distribution.

Notes :-

 Reference used are directly traceable to national standard through unbroken chain of calibration.

2. Results reported are valid at the time of and under the stated conditions of measurement

3. This Certificate refers only to the particular item calibrated.


4 .This certificate shall not be reproduced, except in full without the written permisson of LES-CCL, Kasna, Greater Noida (U.P.)

Kasna

Authorized By

SHIVSHANKER SINGH

Gr. Noida

SHIVSHANKER SINGH (Chief Executive Officer)

Notes :-

1. Reference used are directly traceable to national standard through

unbroken chain of calibration .

2. Results reported are valid at the time of and under the stated conditions of measurement

3. This Certificate refers only to the particular item calibrated.

4 . This certificate shall not be reproduced, except in full without the written

(A Division of Lata Envirotech Services)

K-307,UPSIDC Industrial Area, Site-5, Kasna, Greater Noida, Gautam Budh Nagar-201310 (U.P.)

Website : www.lesccllab.com

CC-2253

CALIBRATION CERTIFICATE

ULR No.	CC22532100000569F		Calib. Field - Fluid Flow	Page 1 of 3	
Certificate No.	LES-CCL/FF/RF/28	LES-CCL/FF/RF/2845			
Calibration Date	05.02.2021	Suggest	ed Date of Next Calibration	04.02.2022	
Customer Name :-	M/s Prism Johnso	on Limited			
Address :-	(Cement Division: Unit - II)				
	Village - Mankahari, P.O. Bathia,				
	Tehsil - Rampur Baghelan, Distt. Satna - 485111				
	(Madhya Pradesh)				
Reference :- S.R.F. No.	2020/929	Date :- 23.06.2020	Date of Issue:-	06.02.2021	

01. DUC Fitted in instrument

Name	Make	Model	SI.No.
Stack Sampler	Vayubodhan	VSS - 1	623 - DTG - 09

02. Details of DUC

Name	Rotameter	Environmental Conditions During Calibration		
Resolution	0.1 lpm	Temperature(°C)	25±3	
SI.No.	E9B078	Relative Humidity (%)	45-75	
Cal. Range	0 - 3 lpm	B. Presure (mmHg)	746.45	

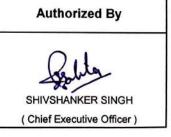
03. Standard Equipment used for calibration

SI.No.	Standard Equipment Name	Range	SI.No.	Traceability
1	Air Flow Calibrator	0.1 - 10.0 lpm	002-DTD-2015	CSIR, NPL, New Delhi
2	Digital Vacuum Indicator	0 - 75 mmHg	Sr. No. 03	LES-CCL, Gr. Noida
3	Digital Temp. Indicator	0 -50°C	T- 02	BELZ, Faridabad
SI.No.	Certificate No.	Calibration Date		Valid Up to
1	20100656/DI.08/C-044	14.10.2020		14.10.2021
2	LES-CCL/MECH/PI/395	30.10.2020		29.10.2021
3	30023672	18.06.2020		17.06.2021

04. Calibration Procedure :- LES-CCL/WI/31/FF/04

Remark 1.Refer page 2 of 3 for Calibration Results and 3 of 3 for Calibration Curve

2. The Flowrate has been Referenced to Standard Temperature (20 'C) and Pressure (760 mmHg Absolute) Condition.


Notes :-

1. Reference used are directly traceable to national standard through

unbroken chain of calibration .

- 2. Results reported are valid at the time of and under the stated conditions of measurement
- 3. This Certificate refers only to the particular item calibrated.
- 4 .This certificate shall not be reproduced, except in full without the written

ULR No.	CC22532100000)0569F	Page 2 of 3
Calibration Date	05.02.2021	Suggested Date of Next Calibration	04.02.2022
Certificate No.	LES-CCL/FF/RF/2845		

05. Calibration Results for Flow of Rotameter

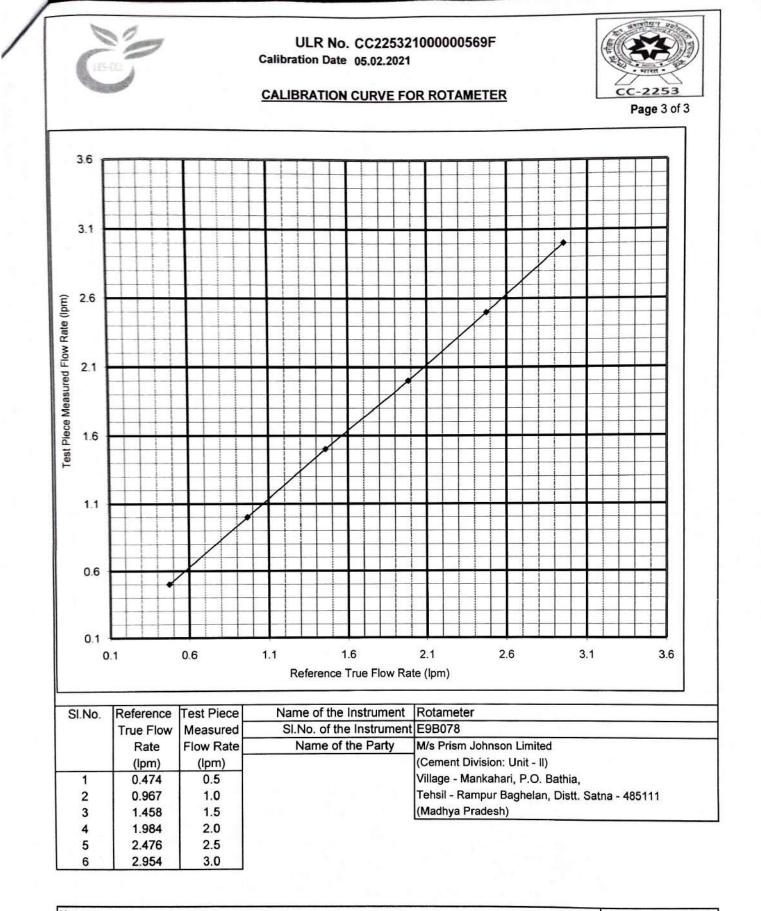
S.No.	(DUC) Indicated reading	Reference True Flow rate	Error (%)	Calibration factor
1.1	(lpm)	(Ipm)	FS	
1	0.5	0.471	0.967	0.942
2	0.5	0.473	0.900	0.946
3	0.5	0.475	0.833	0.950
4	0.5	0.476	0.800	0.952
5	0.5	0.477	0.767	0.954
6	1.0	0.967	1.100	0.967
7	1.5	1.458	1.400	0.972
8	2.0	1.984	0.533	0.992
9	2.5	2.476	0.800	0.990
10	3.0	2.951	1.633	0.984
11	3.0	2.953	1.567	0.984
12	3.0	2.954	1.533	0.985
13	3.0	2.955	1.500	0.985
14	3.0	2.956	1.467	0.985

Type A standard UncertaintyI. for repeated data (1-5)±0.3009 lpmII. for repeated data (10 - 14)±0.0634 lpmExpanded uncertainty in Actual flow
measurement at 95% as a coverage factor k=21I. 0.5 lpm±11.11 % RdgII. 3.0 lpm±5.84 % Rdg

(Curve Enclosed)

Uncertainty Contributing Factor :-

1. Repeatability (based on five measurements)


2. Uncertainty of master instruments

3.Resolution of DUC

The evaluated Expanded Uncertainty in calibration at a coverage factor k = 2,

for degrees of freedom =* and confidence level is 95 % for Normal distribution.

Notes :1. Reference used are directly traceable to national standard through unbroken chain of calibration .
2. Results reported are valid at the time of and under the stated conditions of measurement
3. This Certificate refers only to the particular item calibrated.
4. This certificate shall not be reproduced, except in full without the written permisson of LES-CCL. Kasna, Greater Noida (U.P.)

Notes :-

 Reference used are directly traceable to national standard through unbroken chain of calibration.

2. Results reported are valid at the time of and under the stated conditions of measurement

3. This Certificate refers only to the particular item calibrated.

4 This certificate shall not be reproduced, except in full without the written

permisson of LES-CCL. Kasna, Greater Noida (U.P.)

SHIVSHANKER SINGH (Chief Executive Officer)

TEST REPORT NO: ECO LAB/AN1/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF AMBIENT NOISE LEVEL

Name of the Company Address of the Company	:	M/s Prism Johnson Ltd. Village Mankahari Tehsil Rampur Baghelan District- Satna (M.P.)
Sample Collected by	:	Mr. Maan Singh
Date of Monitoring	:	11.11.2020 to 13.11.2020
Instrument Description	:	Noise Meter (Make:HTC)
Test Method	:	IS: 4412, Part-1 & 2, 1991

Sl. No.	Locations	Day Time Leq Value in dB(A)	Night Time Leq Value in dB(A)
1.	Near PCL Colony	44.80	40.20
2.	Near Guest House	47.50	42.60
3.	Near Crusher Unit-II	60.10	51.70
4.	Near Admin. Building	55.90	49.30

Noise (Ambient Standard)

Area Code	Category of area	Limit in dB (A) Leq	
		Day Time	Night Time
А	Industrial Area	75	70
В	Commercial Area	65	55
С	Residential Area	55	45
D	Silence Zone	50	40

Note:

1. Day time is reckoned in between 6:00 AM and 10:00 PM.

2. Night time is reckoned in between 10:00 PM and 6:00 AM

3. Silence zone is defined as area up to 100m around such premises as hospitals, educational institutions & courts. The silence zones are to be declared by a competent authority.

4. Mixed categories of areas should be declared as one of the four above-mentioned categories by the competent authority and the corresponding standard shall apply.

Analyst

Authorized Signatory

Ecomen Laboratories Pvt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aligan: Lucknow-226024 Ph.2746282 Fax-2745726

nager (O)

TEST REPORT NO: ECO LAB/AN2/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF AMBIENT NOISE LEVEL

Name of the Company	:	M/s Prism Johnson Ltd. Hinauti- Sijahata& Mankahari Limestone mines
Address of the Company	:	Village Mankahari Tehsil Rampur Baghelan District- Satna (M.P.)
Sample Collected by	:	Mr. Maan Singh
Date of Monitoring	:	11.11.2020 to 13.11.2020
Instrument Description	:	Noise Meter (Make-HTC)
Test Method	:	IS: 4412, Part-1 & 2, 1991

Sl. No.	Locations	Day Time Leq Value in dB(A)	Night Time Leq Value in dB(A)
1.	At Mines site Office	60.85	52.90
2.	Near Western Block Garden	56.10	51.40
3.	Village Hinauti	44.85	38.10
4.	Village Sijahata	46.60	36.80

Noise (Ambient Standard)

Area Code	Category of area	Limit in dB	6 (A) Leq
		Day Time	Night Time
А	Industrial Area	75	70
В	Commercial Area	65	55
С	Residential Area	55	45
D	Silence Zone	50	40

Note:

1. Day time is reckoned in between 6:00 AM and 10:00 PM.

- 2. Night time is reckoned in between 10:00 PM and 6:00 AM
- 3. Silence zone is defined as area up to 100m around such premises as hospitals, educational institutions & courts. The silence zones are to be declared by a competent authority.
- 4. Mixed categories of areas should be declared as one of the four above-mentioned categories by the competent authority and the corresponding standard shall apply.

Authorized Signatory

Ecomen Laboratories Pvt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aligan: Lucknow-226024 Ph.2746282 Fax-2745726

TEST REPORT NO: ECO LAB/AN3/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF AMBIENT NOISE LEVEL

Name o	f the Company	: M/s Prism	Johnson Ltd.
			estone mines
Address	s of the Company	: Village Ma	nkahari
		Tehsil Ram	ipur Baghelan
		District- Sa	tna(M.P.)
Sample	Collected by	: Mr. Maan S	Singh
Date of	Monitoring	; 11.11.2020	to 13.11.2020
Instrum	ent Description	: Noise Mete	er (Make-HTC)
Test Me	ethod	: IS: 4412, P	art-1 & 2, 1991
Sl.	Locations	Day Time	Night Time
No.		Leq Value in	n Leq Value in
		dB(A)	dB(A)
1.	Near Nar Nala Bridge	44.80	38.20
2.	Near Medhi Mines Bound	ary 50.60	41.60
	Pillar No28	50.00	41.00
3.	Near Medhi Mines Bound	ary 54.30	48.20
	Pillar No23	54.50	40.20

Noise (Ambient Standard)

Area Code	Category of area	Limit in dB (A) Leq	
		Day Time	Night Time
А	Industrial Area	75	70
В	Commercial Area	65	55
С	Residential Area	55	45
D	Silence Zone	50	40

Note:

1. Day time is reckoned in between 6:00 AM and 10:00 PM.

2. Night time is reckoned in between 10:00 PM and 6:00 AM

- 3. Silence zone is defined as area up to 100m around such premises as hospitals, educational institutions & courts. The silence zones are to be declared by a competent authority.
- 4. Mixed categories of areas should be declared as one of the four above-mentioned categories by the competent authority and the corresponding standard shall apply.

Authorized Signatory

Ecomen Laboratories i'vt. Ltd. Hut No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726

TEST REPORT NO: ECO LAB/AN4/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF AMBIENT NOISE LEVEL

Name of the Company Address of the Company	:	M/s Prism Johnson Ltd . Village Mankahari Tehsil Rampur Baghelan District- Satna(M.P.)
Sample Collected by	:	Mr. Maan Singh
Date of Monitoring	:	11.11.2020 to 13.11.2020
Instrument Description	:	Noise Meter (Make:HTC)
Test Method	:	IS: 4412, Part-1 & 2, 1991

Sl. No.	Locations	Day Time Leq Value in dB(A)	Night Time Leq Value in dB(A)
1.	At AdiwasiTola	50.80	43.10
2.	At BaisanTola	47.50	37.80
3.	South Site of Working Pit	54.60	50.90
4.	Near Boundary Pillar No.64	55.30	49.50

Noise (Ambient Standard)

Area Code	Category of area	Limit in dE	3 (A) Leq
		Day Time	Night Time
А	Industrial Area	75	70
В	Commercial Area	65	55
С	Residential Area	55	45
D	Silence Zone	50	40

Note:

- 1. Day time is reckoned in between 6:00 AM and 10:00 PM.
- 2. Night time is reckoned in between 10:00 PM and 6:00 AM
- 3. Silence zone is defined as area up to 100m around such premises as hospitals, educational institutions & courts. The silence zones are to be declared by a competent authority.
- 4. Mixed categories of areas should be declared as one of the four above-mentioned categories by the competent authority and the corresponding standard shall apply.

Authorized Signatory

Ecomen Laboratories Pvt. Ltd. Hat No.8 Second Floor Artf Chamber Sector-H. Aliganj, Lucknow-226024 Ph.2746282 Fax-2745726

TEST REPORT NO: ECO LAB/AN5/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF AMBIENT NOISE LEVEL

Name of the Company Address of the Company	:	M/s Prism Johnson Ltd. Village Mankahari Tehsil Rampur Baghelan
		District- Satna(M.P.)
Sample Collected by	:	Mr. Maan Singh
Date of Monitoring	:	12.11.2020 to 13.11.2020
Instrument Description	:	Noise Meter (Make:HTC)
Test Method	:	IS: 4412, Part-1 & 2, 1991

Sl. No.	Locations	Day Time Leq Value in dB(A)	Night Time Leq Value in dB(A)
1.	Village Badarkha	45.10	40.90
2.	Village Hinauta	48.60	37.90
3.	Village Chulhi	44.90	40.40
4.	Village Kulhari	44.30	38.50

Noise (Ambient Standard)

Area Code	Category of area	Limit in dI	3 (A) Leq
		Day Time	Night Time
А	Industrial Area	75	70
В	Commercial Area	65	55
С	Residential Area	55	45
D	Silence Zone	50	40

Note:

- 1. Day time is reckoned in between 6:00 AM and 10:00 PM.
- 2. Night time is reckoned in between 10:00 PM and 6:00 AM
- 3. Silence zone is defined as area up to 100m around such premises as hospitals, educational institutions & courts. The silence zones are to be declared by a competent authority.
- 4. Mixed categories of areas should be declared as one of the four above-mentioned categories by the competent authority and the corresponding standard shall apply.

Authorized Signatory

Ecomen Laboratories i³vt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aligan, Lucknow-226024 Ph.2746282 Fax-2745726

TEST REPORT NO: ECO LAB/AN6/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF WORK PLACE NOISE LEVEL

Name of the Company Address of the Company	:	M/s Prism Johnson Ltd. Village Mankahari Tehsil Rampur Baghelan
		District- Satna (M.P.)
Sample Collected by	:	Mr. Maan Singh
Date of Monitoring	:	11.11.2020 to 13.11.2020
Instrument Description	:	Noise Meter (Make:HTC)
Test Method	:	IS: 4412, Part-1 & 2, 1991

Sl. No.	Locations	Noise Level dB(A)
1.	Kiln Unit-II	78.50
2.	Cement Mill Unit -II	72.60
3.	Near Railway Yard,	77.10
4.	Near Packing Plant	82.35

Authorized Signatory

Ecomen Laboratories Pvt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726

anager (Q) ...

TEST REPORT NO: ECO LAB/AN7/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF AMBIENT NOISE LEVEL

Name of the Company Address of the Company	:	M/s Prism Johnson Ltd. Village Mankahari Tehsil Rampur Baghelan District- Satna(M.P.)
Sample Collected by	:	Mr. Maan Singh
Date of Monitoring	:	11.11.2020 to 13.11.2020
Instrument Description	:	Noise Meter (Make:HTC)
Test Method	:	IS: 4412, Part-1 & 2, 1991

Sl. No.	Locations	Day Time Leq Value in dB(A)	Night Time Leq Value in dB(A)
1.	Near Site Office	55.80	43.35
2.	North side of mines pit	52.40	47.15
3.	South side of pit	49.60	44.20
4.	East side of pit.	44.70	40.80

Analyst

Authorized Signatory

Ecomen Laboratories Pvt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726

lanager (Q) ...

Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/13

TEST REPORT NO: ECO LAB/AN1/11/20 TEST REPORT ISSUE DATE: 24.11.2020

TEST REPORT OF NOISE LEVEL SURVEY

Name of the Customer	:	M/s Prism Johnson Ltd.
Address of the Customer	:	Village Mankahari
		Tehsil Rampur Baghelan
		District- Satna (M.P.)
Sample Collected by	:	Mr. Maan Singh
Date of Monitoring	:	11.11.2020 to 13.11.2020
Instrument Description	:	Noise Meter (Maske:HTC)

Sl. No.	Locations	Leq Value in dB(A)	Protective Measures Adopted	
Doze	r-155 A			
1	Operator's cabin idle running	64.8	Ear muff provided	
2	Operator's Cabin running on load	81.6	Ear muff provided	
Pocla	in 300 CK			
3	Operator's cabin idle running	73.8	Ear muff provided	
4	Operator's Cabin while loading	76.3	Ear muff provided	
HAU	LPAK-PH 40		•	
5	Operator's Cabin while being loaded	72.4	Ear muff provided	
6	Operator's Cabin while hauling	74.5	Ear muff provided	
7	Operator's Cabin unloading in the hopper of crusher	88.6 (For 20 Second)	Ear muff provided	
8	Alarm (while Reversing of dumper)	102.0	Short Duration	
ATL	ASCOPCODRILL		1	
9	Operator's point while drilling	82.8	Ear muff provided	
ROC	KBREAKER			
10	Operator's Cabin	73.5	Ear muff provided	
HEA	HEAVY BLASTING (INSTANTANEOUS)			
11	Blasting shelter	102.2	Momentary	
12	At safe zone	84.9		
AMB	IENT NOISE LEVEL DURING WOR	KING HOURS		
13	Office Campus, Mines workshop, Outfield (Haul Road)	72.8	-	
14	Office Campus, Mines Workshop, Outfield (Haul Road) (at Night)	60.2	-	

Analyst

Authorized Signatory

...

Ecomen Laboratories Pvt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aligani, Lucknow-226024 Ph.2746282 Fax-2745726

Water consumption FY 20-21

Month	Unit II	
	Ground Water	Mines Pit
UOM	KL	KL
Oct-20	0	18340
Nov-20	1667	19849
Dec-20	2640	23505
Jan-21	1007	32850
Feb-21	441	22317
Mar-21	959	29422

FORMAT NO. ECO/QS/FORMAT/07 TEST REPORT NO:ECO LAB/WW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF WASTE WATER*

Name of the Company Address of the Company	 M/s. Prism Johnson Ltd. Village Mankahari, Tehsil Rampur Baghelan Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: STP Inlet
Sample ID Code	: ELW-12577

SI. No.	TESTS	PROTOCOL	RESULT	Limits of Detection
1	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	6.82	2-12
2	Total Suspended Solids(mg/l)	APHA, 23 rd Ed. 2017, 2540-D	153.2	5.0-1000
3	Oil & Grease as O & G (mg/l)	APHA, 23 rd Ed. 2017, 5520 A+B+D	BDL	5.0-600
4	Biochemical Oxygen Demand as BOD (mg/l) 3days at 27 ⁰ C	APHA, 23 rd Ed. 2017, 5210 A+B	40.0	5-10000
5	Chemical Oxygen Demand as COD (mg/l)	APHA, 23 rd Ed. 2017, 5220 A+C	152.0	5-50000

*The result are related only to item tested. BDL = Below Detection Limit

Analyst

Signatory Authorized

Ecomen Laboratories Pvt. Ltd. Hut No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726

FORMAT NO. ECO/QS/FORMAT/07 TEST REPORT NO:ECO LAB/WW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF WASTE WATER*

Name of the Company Address of the Company	 : M/s. Prism Johnson Ltd. : Village Mankahari, Tehsil Rampur Baghelan Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: STP Outlet
Sample ID Code	: ELW-12578

Sl. No.	TESTS	PROTOCOL	RESULT	Limits of Detection	G.S.R 1265 (E)
1	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	6.92	2-12	6.5-9.0
2	Total Suspended Solids (mg/l)	APHA, 23 rd Ed. 2017, 2540-D	18.0	5.0-1000	<100.0
3	Oil & Grease as O & G (mg/l)	APHA, 23 rd Ed. 2017, 5520 A+B+D	BDL	5.0-600	-
4	Biochemical Oxygen Demand as BOD (mg/l) 3days at 27 ⁰ C	APHA, 23 rd Ed. 2017, 5210 A+B	6.5	5-10000	30.0
5	Chemical Oxygen Demand as COD (mg/l)	APHA, 23 rd Ed. 2017, 5220 A+C	34.0	5-50000	-
6.	Fecal Coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 A + E	166.0	-	<1000

*The result are related only to item tested. BDL = Below Detection Limit

Т

Authorized Signatory

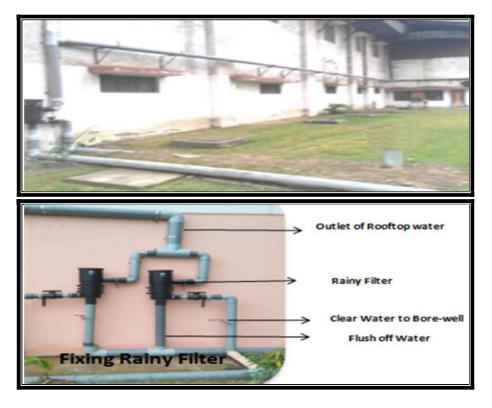
Ecomen Laboratories Pvt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj, Lucknow-226024 Ph.2746282 Fax-2745726

lanager (Q) ...

Annexure 5 (c)

Sewage Treatment Plant Capacity : 600 KLD

Green Belt development



1. Rain water harvesting pond in Mines

2.Roof top Rain water harvesting Structures:-

3. Recharge Shaft with Abandoned bore-wells: Pits of size 3 X 3 X 3 M has been made around three abandoned bore- well inside plant premises to augment the ground water level as the rainwater is directly injected into ground water table, after filtration.

4.Construction of Percolation Tank with Bore Holes: A big percolation tank of size 46.5 X 3.5 X 1.5 Meter is made with four numbers of boreholes. Perforations made in the casing inside recharge structure and wrapped with fine net. Excavated pit has been filled with conventional filters.

5. Recharge Bore Hole for Recharging the Ground Water:

5. Deeping of Ponds and construction of water harvesting structure in nearby villages:

6. Construction of water reservoir at Baghai village for water conservation:

	Rainwater harvesting me	asures a	ction plan	(Plant, colony &	mine sites)
S. No.	Land use type	Area M2	Rainfall	Runoff Coefficient (As per CGWB Guidelines)	Quantity of Rainfall Runoff Generated (Available for Harvesting / Artificial Recharge)
			2020 - 21		2020 - 21
1	Roof - Project office	386	1.209	0.85	396.6729
2	Roof - School	1150	1.209	0.85	1181.7975
3	Roof of MRSS	1900	1.209	0.85	1952.535
4	Roof of Cement Mill Load Center U2	1100	1.209	0.85	1130.415
5	Roof General Store	2000	1.209	0.85	2055.3
6	Cooler Load Centre U1	1100	1.209	0.85	1130.415
7	Cooler Load Centre U2	1000	1.209	0.85	1027.65
8	Runoff Water Harvesting Structure Near Guest House	30000	1.209	0.3	10881
9	Groundwater Recharge with Abandoned Bore well - 1	10000	1.209	0.3	3627
10	Groundwater Recharge with Abandoned Bore well - 2	10000	1.209	0.3	3627
11	Groundwater Recharge with Abandoned Bore well - 3	2500	1.209	0.85	2569.125
12	Groundwater Recharge Pit	9746	1.209	0.85	10015.4769
12	Connected with Storm Drain - A type	17307	1.209	0.3	6277.2489
13	Groundwater Recharge Pit	22828	1.209	0.85	23459.1942
1.5	Connected with Storm Drain - Near	47748	1.209	0.3	17318.1996
14	Ground water recharge with abandoned bore well near steel yard	40000	1.209	0.85	41106
15	New security Barrack	10000	0.753	0.85	6400.5
16	Durtech shed	800	0.385	0.3	92.4
10		30000	0.385	0.85	9817.5
					144065.43

े भारतसरकार खानमंत्रालय भारतीय खानब्यूरो क्षेत्रीय खाननियंत्रक काकार्यालय

GOVERNMENT OF INDIA MINISTRY OF MINES INDIAN BUREAU OF MINES O/O THE REGIONAL CONTROLLER OF MINES

रजिस्टर्ड / साधारण / हाथोंहाथ

जबलपुर, दिनांक :06/04/2015

सं. MP/Satna/Limestone /M.Sch.-86/14-15 /2443.

M/s Prism Cement Ltd., Rajdeep, RewaRoad Satna, District Satna(MP)Pin 485001

विषयः--

संदर्भ :--

सेवामें

म0प्र0 राज्य के सतना जिले में रिथत आपकी हिनौती एवं सिजेहटा (Hinauti&Sijhatta) लाइमस्टोन खान (क्षेत्र 772.067 है0)के एमसीडीआर–1988 के नियम 12 के अंतर्गत जमा किए गए मइनिंग स्कीम का अनुमोदन।

 1) आपके/आरक्यूपीके द्वारा जमा किया गया प्रक्रिया शुल्क के रसीद संख्या 42112 दि0 01/12/2014,आपके/आरक्यूपी के पत्र क्रमांक MINE/2015-15062 दि0 18/02/2015 एवं MINE/2015-15091 दि0 10/03/2015 |.

2) इस कार्यालय का समसंख्यक पत्र दि 29/01/2015

महोदय,

खनिज संरक्षण एवं विकास नियमावली, 1988 के नियम 12 के उपनियम (4) के द्वारा प्रदत्त शवित्तयों के अधोन एतद व्दारा म0प्र0 राज्य के सतना जिले में खित आपकी हिनौती एवं सिजेहटा (Hinauti&Sijhatta) लाउमसटोन खान (क्षेत्र 772.067 है0)की माइनिंग स्कीम का अनुमोदन प्रदान करता हूँ। यह अनुमोदन निम्नलिखित शर्तों के अधीन है:--

- 1 The Scheme of mining is approved without prejudice to any other law applicable to the mine area from time to time whether made by the Central Government, State Government or any other authority and without prejudice to any order or direction from any court of competent jurisdiction.
- 2 The proposals shown on the plates and/or given in the document is based on the lease map /sketch submitted by the applicant/ lessee and is applicable from the date of approval.
- 3 It is clarified that the approval of aforesaid Scheme of Mining does not in any way imply the approval of the Government in terms of any other provision of Mines & Minerals (Development & Regulation) Act, 1957, or the Mineral Concession Rules, 1960 and any other laws including Forest (Conservation) Act, 1980, Environment (Protection) Act, 1986 or the rules made there under, Mines Act, 1952 and Rule & Regulations made there under.
- 4 Indian Bureau of mines has not undertaken verification of the mining lease boundary on the ground and does not undertake any responsibility regarding correctness of the boundaries of the leasehold shown on the ground with reference to lease map & other plans furnished by the applicant / lessee.
- 5 At any stage, if it is observed that the information furnished, data incorporated in the document are incorrect or misrepresent facts, the approval of the document shall be revoked with immediate effect.
- 6 The Financial Assurance submitted by you for Rs 44,25,000 (Rs. Forty Four Lac Twenty Five Thousand only) valid upto 31/03/2020 and next Financial Assurance shall be submitted on or before 31/03/2020
- 7 This approval is restricted in respect of proposals given in the document for the period from 2015-16 to 2019-20 validity upto 31/03/2020 from the date of approval, subject to all other statutory clearances
- 8 The next scheme of mining will be due for submission on 01/12/2019.
- 9 The Environmental Monitoring Cell shall be established by the company. This Environmental Monitoring Cell of the company, shall continue monitoring ambient air quality, dust-fall rate, water quality, soil sample analysis and noise level measurements at various stations established for the purpose both in the core zone and buffer zone as per requirement of Environment Guidelines and keeping in view IBM's circular No. 3/92 & 2/93 season-wise every year or by engaging the services of an Environmental Laboratory approved by MOEF/CPCB. The data so generated shall be maintained in a bound paged register kept for the purpose and the same shall be made available to the inspecting officer, on demand
- 10 As per Madhya Pradesh State Government's order dated 10/08/2011 if there is enhancement of production proposed from that in the approved scheme of mining under such circumstances additional stamp duty has to be paid by the lessee for the enhances quantum of production and also a supplementary agreement has to be made by the lessee
- संलग्नः-अनुमोदित माइनिंग स्कीम की एक प्रति के साथ।

भवदीय - Imdiz (एस० आरं० रॉय) क्षेत्रीय खाननियंत्रक भारतीय खानब्यरो

पता./ Address योजनाकमांक 11 कमलानेहरू नगर, जवलपुर 482002 (मठप्र0) Scheme No.11,Kamla Nehru Nagar, Jabalpur,

प्रतिलिपि :--

- 1. मान्यता प्राप्त व्यक्ति श्री रवि शंकर शुक्ला,आर०क्यू०पी० एवं उप प्रवंधक जियोलाजी में० प्रिज्म सीमेंट लि० राजदीप रीवा रोड सतना , जिला सतना (म०प्र०) ४८५००१ को सूचनार्थ प्रेषित । 2. मान्यता प्राप्त व्यक्ति श्री पियूष गुप्ता ,आर०क्यू०पी० एवं उप प्रवंधक खान में० प्रिज्म सीमेंट लि० राजदीप रीवा रोड सतना , जिला सतना (म०प्र०) ४८५००१ को सूचनार्थ प्रेषित । 3.. संचालक, संचालनालय भौमिकी तथा खनिकर्म, 'खनिजभवन' 29–ए, अरेरा हिल्स, भोपाल (म०प्र०) को
- अनुमोदित माइनिंग स्कीम की एक प्रति के साथ रजिस्टर्ड डाक द्वारा प्रेषित ।

4 (एस० आर० रॉय) क्षेत्रीय खाननियंत्रक भारतीय खानब्यूरो

रजिस्टर्ड / साधारण डाक GOVERNMENT OF INDIA MINISTRY OF MINES INDIAN BUREAU OF MINES 0/0 THE REGIONAL CONTROLLER OF MINES No. : MP/Satna/Limestone /M.Sch-6/16-17 Jabalpur,dt. : 4/11/2016

M/s Prism Cement Ltd., Rajdeep, Rewa Road, Satna, District Satna (MP) 485001

भारतसरकार

खानमंत्रालय

भारतीय खानब्युरो

क्षेत्रीय खाननियंत्रक काकार्यालय

विषय:- म०प्र० राज्य के सतना जिले में स्थित आपकी मेंढी (Mendhi) लाइमस्टोन खान (क्षेत्र 117.594हे0) के एमसीडीआए-1988 के नियम 12 के अंतर्गत जमा किए गए माइनिंग स्कीम का अनुमोदन।

संदर्भः– 1) आपके द्वारा जमा किया गया प्रक्रिया शुल्क के रसीद संख्या J/170 दि0– 30/05/2016, आपका पत्र क्रमांक कुछ नहीं दि० 23/05/2016 एवं 19/09/2016।

2) इस कार्यालय का समसंख्यक पत्र दि0-12/09/2016।

महोदय,

To:

खनिज संरक्षण एवं विकास नियमावली, 1988 के नियम 12 के उपनियम (4) के द्वारा प्रदत्त शक्तियों के अधीन एतद द्वारा म0प्र0 राज्य के सतना जिले में स्थित आपकी मेंढी (Mendhi) लाइमस्टोन खान (क्षेत्र 117.594है0) की माइनिंग स्क्रीम का अनुमोदन प्रदान करता हूँ। यह अनुमोदन निम्नलिखित शर्तो के अधीन ĝ.-

- The Scheme of mining is approved without prejudice to any other law applicable to the mine area 1 from time to time whether made by the Central Government, State Government or any other authority and without prejudice to any order or direction from any court of competent jurisdiction.
- The proposals shown on the plates and/or given in the document is based on the lease map /sketch 2 submitted by the applicant/ lessee and is applicable from the date of approval. 3
- It is clarified that the approval of aforesaid Scheme of Mining does not in any way imply the approval of the Government in terms of any other provision of Mines & Minerals (Development & Regulation) Act, 1957, or the Mineral Concession Rules, 1960 and any other laws including Forest (Conservation) Act, 1980, Environment (Protection) Act, 1986 or the rules made there under, Mines Act, 1952 and Rule & Regulations made there under.
- Indian Bureau of mines has not undertaken verification of the mining lease boundary on the 4 ground and does not undertake any responsibility regarding correctness of the boundaries of the leasehold shown on the ground with reference to lease map & other plans furnished by the applicant / lessee
- At any stage, if it is observed that the information furnished, data incorporated in the document 5 are incorrect or misrepresent facts, the approval of the document shall be revoked with immediate effect. 6
- The Financial Assurance submitted by you for Rs 16,25,000 (Rs. Sixteen Lakh Twenty Five Thousand only) valid up to 31/03/2021 and next Financial Assurance shall be submitted on or before 31/03/2021.
- This approval is restricted in respect of proposals given in the document for the period from 2016-17 to 2020-21 validity up to 31/03/2021 from the date of approval, subject to all other statutory clearances.
- The next scheme of mining will be due for submission on 01/12/2020. 9
- As per Madhya Pradesh State Government's order dated 10/08/2011 if there is enhancement of production proposed from that in the approved scheme of mining under such circumstances additional stamp duty has to be paid by the lessee for the enhances quantum of production and also a supplementary agreement has to be made by the lessee.
- 10 If the approval conflict with any other law or court order/direction under any statute, it shall be revoked immediately

संलग्नः--अनुमोदित माइनिंग स्कीम की एक प्रति के साथ।

भवदीय 5 4TK NOV, 2011 1 - Ofm mileral

भारत सरकार खान मंत्रालय भारतीय खान ब्यूरो क्षेत्रीय खान नियंत्रक का कार्यालय

GOVERNMENT OF INDIA MINISTRY OF MINES INDIAN BUREAU OF MINES O/O THE REGIONAL CONTROLLER OF MINES

जबलपुर, दिनांक : 29/02/2016

रजिस्टर्ड पार्सल द्वारा

सं. MP/Satna/Limestone /M.Sch.-35/2015-16 [77]

सेवा में - M/s Prism Cement Ltd.,

Rajdeep, Rewa Road, Satna, District Satna (MP)485001

विषयः- म०प्र० राज्य के सतना जिले में स्थित आपकी बगहई (Bagahai)लाइमस्टोन खान (क्षेत्र 512.317है0) के एमसीडीआर-1988 के नियम 12 के अंतर्गत जमा किए गए माइनिंग स्कीम का अनुमोदन।

संदर्भ :- 1) आपके/आरक्यूपी के द्वारा जमा किया गया प्रक्रिया शुल्क के रसीद संख्या J/46 दि0 17/11/2015, आपके/आरक्यूपी के पत्र क्रमांक कुछ नहीं दि0 10/02/2016।

2) इस कार्यालय का समसंख्यक पत्र दि 13/01/2016

महोदय,

खनिज संरक्षण एवं विकास नियमावली, 1988 के नियम 12 के उपनियम (4) के द्वारा प्रदत्त शक्तियों के अधीन एतद् व्वारा म0प्र0 राज्य के सतना जिले में स्थित आपकी बगहई (Bagahai)लाइमस्टोन खान (क्षेत्र 512.317हे0)की माइनिंग स्कीम का अनुमोदन प्रदान करता हूँ ।यह अनुमोदन निम्नलिखित शर्तो के अधीन है : –

- 1 The Scheme of mining is approved without prejudice to any other law applicable to the mine area from time to time whether made by the Central Government, State Government or any other authority and without prejudice to any order or direction from any court of competent jurisdiction.
- 2 The proposals shown on the plates and/or given in the document is based on the lease map /sketch submitted by the applicant/ lessee and is applicable from the date of approval.
- 3 It is clarified that the approval of aforesaid Scheme of Mining does not in any way imply the approval of the Government in terms of any other provision of Mines & Minerals (Development & Regulation) Act, 1957, or the Mineral Concession Rules, 1960 and any other laws including Forest (Conservation) Act, 1980, Environment (Protection) Act, 1986 or the rules made there under, Mines Act, 1952 and Rule & Regulations made there under.
- 4 Indian Bureau of mines has not undertaken verification of the mining lease boundary on the ground and does not undertake any responsibility regarding correctness of the boundaries of the leasehold shown on the ground with reference to lease map & other plans furnished by the applicant / lessee.
- 5 At any stage, if it is observed that the information furnished, data incorporated in the document are incorrect or misrepresent facts, the approval of the document shall be revoked with immediate effect.
- 6 The Financial Assurance submitted by you for Rs 33,24,000/-(Rs. Thirty Three Lac Twenty Four Thousand only) valid upto 31/03/2021 and next Financial Assurance shall be submitted on or before 31/03/2021.
- 7 This approval is restricted in respect of proposals given in the document for the period from 2016-17 to 2020-21 validity upto 31/03/2021 from the date of approval, subject to all other statutory clearances.
- 8 The next scheme of mining will be due for submission on 01/12/2020.
- 9 As per Madhya Pradesh State Government's order dated 10/08/2011 if there is enhancement of production proposed from that in the approved scheme of mining under such circumstances additional stamp duty has to be paid by the lessee for the enhances quantum of production and also a supplementary agreement has to be made by the lessee.
- 10 The Environmental Monitoring Cell shall be established by the company. This Environmental Monitoring Cell of the company, shall continue monitoring ambient air quality, dust-fall rate, water quality, soil sample analysis and noise level measurements at various stations established for the purpose both in the core zone and buffer zone as per requirement of Environment Guidelines and keeping in view IBM's circular No. 3/92 & 2/93 season-wise every year or by engaging the services of an Environmental Laboratory approved by MOEF/CPCB. The data so generated shall be maintained in a bound paged register kept for the purpose and the same shall be made available to the inspecting officer, on demand

संलग्नः-अनुमोदित माइनिंग स्कीम की एक प्रति के साथ।

(एस० आर० रॉॅंय) खान नियंत्रक एवं (I/C) क्षेत्रीय कार्यालय भारतीय खान ब्यूरो, जबलपुर प्रतिलिपि :--

- मान्यता प्राप्त व्यक्ति श्री संजय सिंह बघेल, मकान नं० सी–75, प्रिज्म सीमेन्ट लि० कालोनी, मनकहरी, पो०आ० बाठिया, तह० रामपुर बघेलान, जिला–सतना (म०प्र०) 485111 को सूचनार्थ प्रेषित ।
- मान्यता प्राप्त व्यक्ति श्री विनोद कुमार गिरी,राजेन्द्र नगर, स्ट्रीट–9, सतना, जिला–सतना (म0प्र0) 485001 को सूचनार्थ प्रेषित ।
- संचालक, संचालनालय भौमिकी तथा खनिकर्म, 'खनिजभवन' 29–ए, अरेरा हिल्स, भोपाल (म0प्र0) को अनुमोदित माइनिंग स्कीम की एक प्रति के साथ रजिस्टर्ड डाक द्वारा प्रेषित ।

(एस0 आर0 रॉय) खान नियंत्रक एवं (I/C) क्षेत्रीय कार्यालय भारतीय खान ब्यूरो, जबलपुर

पता./ Address योजनाकमांक 11 कमलानेहरू नगर, जबलपुर 482002 (म0प्र0) Scheme No.11,Kamla Nehru Nagar, Jabalpur, 482002 (M.P.)फोन/ Phone : 2416780, 2416589, 2416231फैक्स/Fax:(0761) 2416780

יוודם אונסוע खान मंत्रालय भारतीय खान व्यूरो क्षेत्रीय खान नियंत्रक का कार्यालय

GOVERNMENT OF INDIA MINISTRY OF MINES INDIAN BUREAU OF MINES 0/0 THE REGIONAL CONTROLLER OF MINES

Jabalpur, dt.: 27/04/2017

File No.- MP/Satna/Limestone /RMP-44/17-18 To,

M/s Prism Cement Limited,

Rajdeep, Rewa Road, Satna (M.P.) 485001

विषय:- म0प्र0 राज्य के सतना जिले में स्थित आपकी प्रिज्म सीमेंट लाइमस्टोन खान (क्षेत्र 99.416 हे0) के एमसीआर– 2016 के नियम 17 (1) के अंतर्गत जमा किए गए खनन् योजना के पुनर्विलोकन का अनुमोदन।

संदर्भ :--1) आपके द्वारा जमा किये गये प्रक्रिया शुल्क की रसीद संख्या J/427, दिo 22/03/2017. आपका/क्यू पी० का पत्र क्रमांक – कुछ नहीं, दि० २०/०३/२०१७ एवं १९/०४/२०१७। 2) इस कार्यालय का समसंख्यक पत्र दि0- 13/04/2017।

महोदय

In exercise of the powers conferred by the Clause (b) of Sub-section (2) of Section 5 of Mines and Minerals (Development and Regulation) Act, 1957 read with Government of India Order no. S.O.1857(E),dated 18/05/2016, I hereby approve the above said Review of Mining Plan including Progressive Mine Closure Plan submitted under Rule 17(1) of Minerals (Other than Atomic and Hydrocarbons Energy Minerals) Concession Rules, 2016. This approval is subject to the following conditions:

- The Review of Mining Plan is approved without prejudice to any other law applicable to the mine area from time to time whether made by the Central Government, State Government or any other authority and without prejudice to any order or direction from any court of competent jurisdiction.
- The proposals shown on the plates and /or given in the document is based on the lease map /sketch 2 submitted by the applicant/ lessee and is applicable from the date of approval. 3
- It is clarified that the approval of aforesaid Review of Mining Plan does not in any way imply the approval of the Government in terms of any other provision of Mines & Minerals (Development & Regulation) Amendment Act, 2015, or the Minerals (Other than Atomic and Hydro Carbons Energy Minerals) Concession Rules, 2016 and any other laws including Forest (Conservation) Act, 1980, Environment (Protection) Act, 1986 or the rules made there under, Mines Act, 1952 and Rule & Regulations made there under.
- Indian Bureau of mines has not undertaken verification of the mining lease boundary on the ground and 4 does not undertake any responsibility regarding correctness of the boundaries of the leasehold shown on the ground with reference to lease map & other plans furnished by the applicant / lessee. 5
- At any stage, if it is observed that the information furnished, data incorporated in the document are incorrect or misrepresent facts, the approval of the document shall be revoked with immediate effect. 6
- The Financial Assurance submitted by you for Rs. 54,37,800/- (Rs. Fifty Four Lakh Thirty Seven Thousand Eight Hundred only) is valid up to 31/03/2022 (Your kind attention for enhancement of financial assurance as per rule 27 of MCDR, 2017) and next Financial Assurance shall be submitted on or before 31/03/2022.
- This approval is restricted in respect of proposals given in the document for the period from 2017-18 to 2021-22 with validity up to 31/03/2022, from the date of approval, subject to all other statutory clearances. 8
- If the approval conflicts with any other law or court order/direction under any statute, it shall be revoked immediately. 9
- In the approved document, wherever Rule 12(3) of MCDR, 1988 is mentioned, it should be read as Rule 17(1) of Minerals (Other than Atomic and Hydrocarbon Energy Minerals) Concession Rules, 2016.
- 10 The next Review of Mining Plan will be due for submission on 01/10/2021. 11
- This approval is restricted to Major Mineral only and any reflection of minor mineral in the document is under purview of State Government. 12
- As per Madhya Pradesh State Government's order dated 10/08/2011 if there is enhancement of production proposed from that in the approved scheme of mining under such circumstances additional stamp duty has to be paid by the lessee for the enhances quantum of production and also a supplementary agreement has to be made by the lessee.

13. As per Undertaking dated 14/04/2017 appended with Review of Mining Plan, wherein it is stated that the boundary pillars of the remaining blocks will be erected during next six month, in this regard a Surface Plan showing all boundary pillars as well as their co-ordinates may be submitted to this office within 6(six) month of period from the date of issue of this letter. संलग्नः-अनुमोदित पुनर्विलोकन खनन् योजना की एक प्रति के साथ।

Gantha 7.2017

भारत सरकार खान मंत्रालय भारतीय खान ब्यूरो क्षेत्रीय खान नियंत्रक का कार्यालय

GOVERNMENT OF INDIA MINISTRY OF MINES INDIAN BUREAU OF MINES O/O THE REGIONAL CONTROLLER OF MINES

फा0 सं0 - MP/Satna/Limestone/MPLN /MOD-63/2017-183365जबलपुर, दिनांक : 16 / 10 / 2017 सेवा-में,

मे0 प्रिज्म सीमेंट लिमिटेड, राजदीप, रीवा रोड, सतना जिला– सतना (म0प्र0) 485001

विषयः– म०प्र० राज्य के सतना जिले में स्थित आपकी बगहाई लाइमस्टोन खान (क्षेत्र 512.317 हेo) के एमसीआर–2016 के नियम 17 (3) के अंतर्गत जमा किए गए अनुमोदित माइनिंग प्लान के लिए प्रस्तुत संशोधन का अनुमोदन।

संदर्भ :--1) आपके द्वारा जमा किये गये प्रक्रिया शुल्क की रसीद संख्या J/550, दि0 15/09/2017, आपका/क्यू0पी0 का पत्र, दि0 04/09/2017 एवं 10/10/2017।

इस कार्यालय का समसंख्यक पत्र दि0- 26/09/2017।

महोदय,

In exercise of the powers conferred by the Clause (b) of Sub-section (2) of Section 5 of Mines and Minerals (Development and Regulation) Act, 1957 read with Government of India Order no. S.O.1857(E),dated 18/05/2016, I hereby **approve** the above said Modification in approved Mining Plan including Progressive Mine Closure Plan submitted under Rule 17(3) of Minerals (Other than Atomic and Hydrocarbons Energy Minerals) Concession Rules, 2016. This approval is subject to the following conditions:

- 1 The Modification in approved Mining Plan is approved without prejudice to any other law applicable to the mine area from time to time whether made by the Central Government, State Government or any other authority and without prejudice to any order or direction from any court of competent jurisdiction.
- 2 The proposals shown on the plates and /or given in the document is based on the lease map /sketch submitted by the applicant/ lessee and is applicable from the date of approval.
- 3 It is clarified that the approval of aforesaid Mining Plan does not in any way imply the approval of the Government in terms of any other provision of Mines & Minerals (Development & Regulation) Amendment Act, 2015, or the Minerals (Other than Atomic and Hydro Carbons Energy Minerals) Concession Rules, 2016 and any other laws including Forest (Conservation) Act, 1980, Environment (Protection) Act, 1986 or the rules made there under, Mines Act, 1952 and Rule & Regulations made there under.
- 4 Indian Bureau of mines has not undertaken verification of the mining lease boundary on the ground and does not undertake any responsibility regarding correctness of the boundaries of the leasehold shown on the ground with reference to lease map & other plans furnished by the applicant / lessee.
- 5 At any stage, if it is observed that the information furnished, data incorporated in the document are incorrect or misrepresent facts, the approval of the document shall be revoked with immediate effect.
- 6 The Financial Assurance submitted by you for Rs. **3,98,88,000/-** (Rs. Three Crore Ninety Eight Lakh Eighty Eight Thousand only) is valid up to **31/03/2021** (Your kind attention for enhancement of submitted on or before **31/03/2021**.
- 7 This approval is restricted in respect of proposals given in the document for the period from 2017-18 to 2020-21 with validity up to 31/03/2021, from the date of approval, subject to all other statutory clearances.
- 8 If the approval conflicts with any other law or court order/direction under any statute, it shall be revoked immediately.
- 9 The modification in approved mining plan is approved subject to extension of period of mining lease as per Mines and Minerals (Development and Regulation) Amendment Act 2015.
 10 This approval is restricted to Major Mineral only and period of mining lease
- This approval is restricted to Major Mineral only and any reflection of minor mineral in the document is under purview of State Government.
 As per Madhya Pradesh State Government's order dated 10/08/2011 is the second state of t
- 11 As per Madhya Pradesh State Government's order dated 10/08/2011 if there is enhancement of production proposed from that in the approved scheme of mining under such circumstances additional stamp duty has to be paid by the lessee for the enhances quantum of production and also a supplementary agreement has to be made by the lessee.

संलग्नः-अनुमोदित संशोधित माइनिंग प्लान की एक प्रति के साथ।

16 Det, 2017 रजनीश पुरोहित) क्षेत्रीय खान नियंत्रक भारतीय खान ब्यूरो, जबलपुर

खान मंत्रालय भारतीय खान ब्यूरो क्षेत्रीय खान नियंत्रक का कार्यालय

MINISTRY OF MINES INDIAN BUREAU OF MINES O/O THE REGIONAL CONTROLLER OF MINES

जबलपुर, दिनांक : 14/12/2018

দ্দা০ র্না০ - MP/Satna/ Limestone /MPLN /MOD-30/2018-19

प्रति. भे0 प्रिज्म जॉनसन लिमिटेड, राजदीप, रीवा रोड, सतना जिला– सतना (म0प्र0) 485001

विषय:- मCHO राज्य के सतना जिले में स्थित आपकी बगहाई (BAGAHAI) लाइमस्टोन खान (क्षेत्र 512.317 हे0) के एमसीआर-2016 के नियम 17(3) के अंतर्गत जमा किए गए अनुमोदित माइनिंग प्लान के लिए प्रस्तुत संशोधन का अनुमोदन।

संदर्भ :--1) आपका / क्यू0पी0 का पत्र क्रमांक- PJL/MINE/BG/2018/538, दि० 14/10/2018, प्रक्रिया शुल्क की रसीद संख्या J/838, दि० 30/10/2018।

2) इस कार्यालय का समसंख्यक पत्र दि0- 20/11/2018।

महोदय,

In exercise of the powers conferred by the Clause (b) of Sub-section (2) of Section 5 of Mines and Minerals (Development and Regulation) Amendment Act, 2015 read with Government of India Order no. S.O.1857(E),dated 18/05/2016, 1 hereby **approve** the above said Modification in approved Mining Plan including Progressive Mine Closure Plan submitted under Rule 17(3) of Minerals (Other than Atomic and Hydrocarbons Energy Minerals) Concession Rules, 2016. This approval is subject to the following conditions:

- 1 The Modification in approved Mining Plan is approved without prejudice to any other law applicable to the mine area from time to time whether made by the Central Government, State Government or any other authority and without prejudice to any order or direction from any court of competent jurisdiction.
- 2 The proposals shown on the plates and /or given in the document is based on the lease map /sketch submitted by the applicant/ lessee and is applicable from the date of approval.
- 3 It is clarified that the approval of aforesaid Modified Mining Plan does not in any way imply the approval of the Government in terms of any other provision of Mines & Minerals (Development & Regulation) Amendment Act, 2015, or the Minerals (Other than Atomic and Hydro Carbons Energy Minerals) Concession Rules, 2016 and any other laws including Forest (Conservation) Act, 1980, Environment (Protection) Act, 1986 or the rules made there under, Mines Act, 1952 and Rule & Regulations made there under.
- Indian Bureau of mines has not undertaken verification of the mining lease boundary on the ground and does not undertake any responsibility regarding correctness of the boundaries of the leasehold shown on the ground with reference to lease map & other plans furnished by the applicant / lessee.
 At any stage, if it is observed that the information furnished, data incorporated in the document are
- 5 At any stage, if it is observed that the information furnished, data incorporated in the document are incorrect or misrepresent facts, the approval of the document shall be revoked with immediate effect.
- 6 The Financial Assurance submitted by you for Rs. 3,98,88,000/- (Rs. Three Crore Ninety Eight Lakh Eighty Eight Thousand only) is valid up to 31/03/2021 and next Financial Assurance shall be submitted on or before 31/03/2021.
- 7 This approval is restricted in respect of proposals given in the document for the period 2018-19 to 2020-21 with validity up to 31/03/2021, from the date of approval, subject to all other statutory clearances.
- 8 If the approval conflicts with any other law or court order/direction under any statute, it shall be revoked immediately.
- 9 The modification in approved mining plan is approved subject to extension of period of mining lease as per Mines and Minerals (Development and Regulation) Amendment Act 2015.
- 10 As per Madhya Pradesh State Government's order dated 10/08/2011 if there is enhancement of production proposed from that in the approved scheme of mining under such circumstances additional stamp duty has to be paid by the lessee for the enhances quantum of production and also a supplementary agreement has to be made by the lessee.

संलग्न---अनुमोदित संशोधित माइनिंग प्लान की एक प्रति के साथ।

514th Dec, 2018

ਸਰਵੀਸ਼

(रजनीश पुरोहित)

Annexure 9

Table no. 1. ML area 772.067 Ha. (Hinauti & Sijahata) Present Dumps status

Dump No.	Location of Dump	Present Height of Dump (m)
S1	300E to 400E and 80N to 220N	2.0
S2	410E to 880E and 210N to 50N	6.0
S3	920E to 1010E and 320N to 360N	4.0
S4	1060E to 1220E and -60N to 320N	6.0

Table no. 2. ML area 99.416 Ha. (Hinauti & Sijahata)

Present Dumps status

Dump No.	Location of Dump	Present Height of Dump (m)
D1	1720E to1810E and -1130N to-1155N	6.0
D2	1670E to1720E and -1240N to-1120N	6.7

Table no. 3. ML area 512.317 Ha. (Baghai) Present Dumps status

Dump No.	Location of Dump	Present Height of Dump (m)
S1	644E to 685E and 2092N to 2317N	3.5
S2	848E to 915E and 1432N to 1500N	15.0
S3	927E to 959E and 1242N to 1356N	4.0
S4	1060E to 1220E and -60N to 320N	3.5
S5	1112 E to 1162 E and 997 N to 1187 N 4.0	
S6	1478 E to 1540 E and 1307 N to 1438 N	4.0
WS1	635E to 692E and 2338N to 2397N	3.0
WS2	879E to 904E and 2292N to 2323N	3.0
WS4	790E to 868E and 1477N to 1753N	13.0
WS5	1400E to 1538E and 1354N to1531N	13.0

Table no. 4. ML area 117.594 Ha. (Mendhi)

Present Dumps status:-Nil

photographs of Dumps:

PLAN FOR PROTECTION OF THE NATURAL WATER COURSE PASSING NEARBY PRISM CEMENT LIMITED LEASE AREAS

1. INTROCUCTION:

The Limestone Mine of M/s. Prism Johnson Ltd. is near villages Hinauti & Sijhatta in district of Satna, Madhya Pradesh. The area is in Vindhyan Limestone/shale formations, where Limestone is bearing mined from mining lease areas of 772.067 Ha. 117.594 Ha. 512.317 Ha. 99.416 Ha., amongst other mining leases. As per the conditions of the Environment Clearance, a plan was protection of natural water courses passing nearby Prism Cement Ltd. Leases was to be prepared and submitted.

The natural water courses under the present plan comprise Tamas River, Nar Nala and Magardha Nala.

2. LAND USE IN THE BUFFER AREA OF THE LEASES:

Buffer zone:

The land use of buffer zone is given in **Table 1** based on satellite imaginary and census data.

LAND USE	AREA (in Hectares)	AREA (in %)
River/Canal	634.71	1.32
Ponds/Reservoir	561.73	1.17
Stonsy area	144.16	0.30
Open land	441.36	0.92
Open scrub land	3737.14	7.76
Forest Land	1685.11	3.50
Plantation	2445.89	5.08
Fallow land	29729.69	61.77
Crop land	7542.87	15.67
Human Settlement	706.28	1.47
Industrial Area	75.80	0.16
Mine Quarry	425.75	0.88
Total	48310.49	100

Land Use / Land Cover Details of Buffer Zone Area

(Source - EIA/EMP)

3. DRAINAGE:

The Tamas (Tons) River mainly controls the drainage pattern. The none seasonal nalla viz. Magardaha and Nar nala flowing on west and east of the lease area respectively flow towards north and ultimately join the Tamas River. The area is almost flat with gentle slope towards East and Northeast. A substantial part of rainfall in the area drains away as surface run-off, along streamlets towards the Northeast to the Tamas River. The drainage map of Tamas (Tons) sub basin of Ganga basin is depicted in **Figure 2**. The drainage pattern of buffer zone (part of Tamas sub basin) is also given in **Figure 3**.

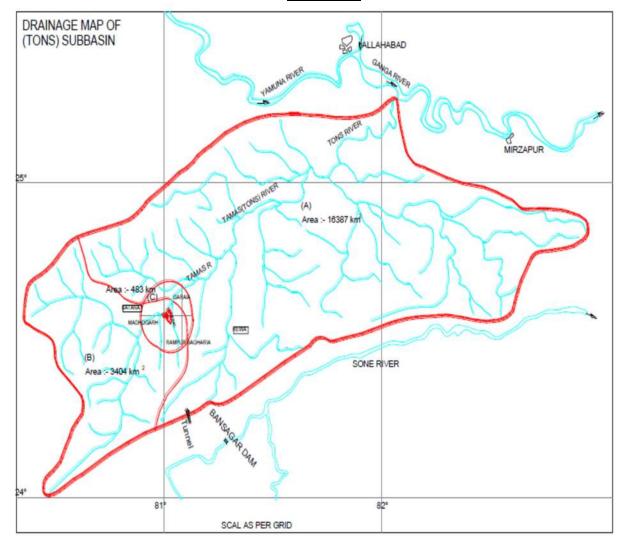
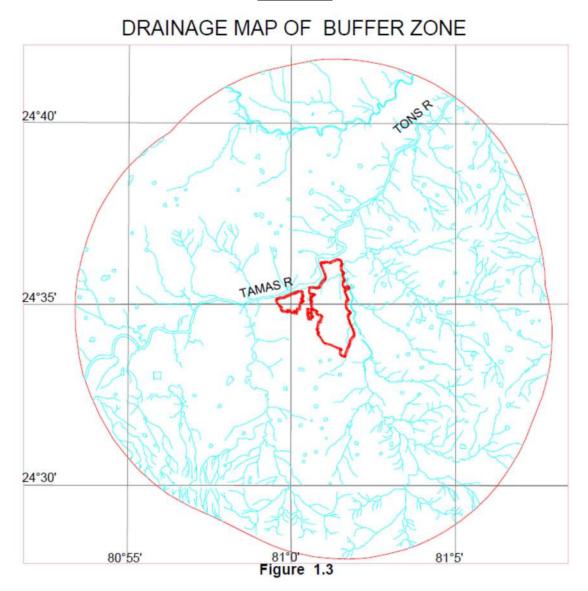



FIGURE 2

FIGURE-3

4. HYDROMETEROLOGY:

Madhya Pradesh state is situated within 180 N to 250 N and 740 E to 820 E experiences tropical climate. Frontispieces gives the orographic feature of the state. Geographical location and orographic features have profound influence on the climate of area. As per IMD the year may be divided into four seasons. The winter season from January to February is followed by the summer season from March to May. The period from June to September constitutes the southwest monsoon season and the period from October to December form the post monsoon season.

4.1 **Rainfall :** Rainfall data of Mine site and Satna IMD station are collected for the project of 2008 to 2014 and given in (**Table NO. -2**).

Month/ Year	2008	20	09	20	10	20)1 <mark>1</mark>	20	12	20	13	2014
	Mine Site	Mine Site	Satna	Mine Site	Satna	Mine Site	Satna	Mine Site	Satna	Mine Site	Satna	Mine Site
Jan	2.0	35.3	12.9	8.8	1.7	0.0	0.0	36.0	32.3	0.0	0.0	38.9
Feb	35.1	0.0	0.0	13.3	5.5	1.0	0.9	0.0	0.0	67.9	45.9	104.3
Mar	1.3	3.6	1.4	0.0	0.0	3.2	0.2	3.6	3.9	34.6	11.5	29.3
Apr	12.0	0.7	3.8	0.0	0.1	0.0	1.1	0.0	0.2	1.8	4.2	8.7
May	12.5	10.5	14.5	18.6	1.6	36.2	7.3	0.0	0.0	0.0	0.0	1.3
Jun	215.6	12.5	25.8	16.9	16.4	313.9	328.6	17.9	15.6	270.4	384.2	90.2
Jul	216.8	173.2	207.6	283.3	228.1	140.2	252.1	380.7	279.7	576.5	338.6	305.2
Aug	220.2	214.9	192.5	198.3	209.7	206.7	289.8	435.0	455.1	414.5	451.6	127.2
Sep	71.5	109.7	152.0	213.5	176.4	205.3	143.9	132.1	169.3	134.9	71.5	193.9
Oct	0.0	72.9	220.4	29.6	13.7	0.0	3.1	15.1	2.5	131.4	143.7	200.7
Nov	20.1	80.9	58.9	11.8	9.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dec	0.0	2.6	2.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21.9
Total	807.1	716.7	892.7	794.0	662.9	906.5	1027.0	1020.3	958.6	1631.9	1451.2	1121.7

TABLE NO.2 Year wise rainfall data (2008 to 2014) : Satna and Mine Site

(Source - Mine & Satana Dist.)

5. GEOLOGY:

The relevant portion of Geological report of the area have been adapted for present study. Part of compilation done from other references.

5.1 Regional Geology

Geologically, this area forms part of the Rewa Plateau belonging to the Upper Vindhyan Supergroup of rock formations in Indian stratigraphy. The Vindhyan formations are roadly classified into lower calcareous and an upper arenaceous facies.

The limestone deposit in the area of investigation belongs to the Bhander series. The general trend of Bhander Limestone is East - Northeast to West - Southwest having low southerly dips of less than 5[°]. The litho stratigraphy of Vindhyan formation is given in **Table NO.3**

Supergroup	Group	Formation			
	Bhander Group	Maihar Sandstone Sirbu Shale Bhander Limestone			
Min dhuan Ounannaun	Rewa Group	Sandstone and shale			
Vindhyan Supergroup	Kaimur Group	Sandstone and shale			
	UNCONFORMITY				
	Semri Group	Rohtas Formation Khemjua Formation Porcellance Formation Basal Formation			
	UNCONFORMITY	·			
	Bundekhand granites/Bijawar phyllites				

TABLE NO.3 Litho stratigraphy of Satna District

5.2 Local Geology:

The detailed geological prospecting was carried out by GEM Division of ACC to identify the geological structure in the area and association of different rock types. The lithological succession of various formations encountered in the area of investigations based on the sub-surface data generated is as follows:

Overburden Soil Buff to pale grey magnesian limestone Upper shaly limestone Grey limestone Lower shaly limestone Grey to grayish grey shale

6.0 SUGGESTED STRUCTURES FOR PROTECTION AND DEVELOPMENT OF NATURAL WATER COURSES:

6.1 RAINWATER HARVESTING

6.1.1 General: Rain water harvesting can be defined as activity of direct collection of Rain

water and storage of rainwater as well as other activity aimed at harvesting and conserving surface and ground water preventing loss through evaporation and seepage and other hydrological studies and engineering inventions aiming at most efficient utilization of rainwater towards best use for the humanity.

The detail project report for rainwater harvesting is given below incorporating; source, area, design of individual structure within mine lease area and outside.

6.1.2 Source of Water:

The source or water available for rainwater harvesting is only surface water. The resource estimation for lease area has been done considering total lease area of 10.25 km2 (7.72 km2 + 2.53 km2). Monsoon normal rainfall 0.973 m and surface runoff coefficient of 0.40. The estimated surface water resource will be 3.99 MCM out of this 0.58 MCM will be used in plant & mine. The mine water discharge will be zero. It is expected that remaining estimated resource 3.41 MCM will be available for recharge to the system and future use. CGWA while granting ground water had laid condition for implementation of ground water recharge measure to the tune of 1.206 MCM/ year for augmenting the ground water resource of the area.- Source of data, Hydrological Studies Report.

6.1.3 Identification of area:

The areas identified within lease area are given in Table No.4

Sr. No.	Identification of area	Unit
1	Surface water reservoir in the Mined out area as recharge pond.	3 Nos
2	Check dam on Nar nadi.	8 Nos
3	Office and residential building area for Rooftop rainwater harvesting	10 Nos
4	Lease area (side of retention wall) of dump for recharge pit with shaft structure	4 Nos
5	Recharge trench in colony area.	500 m
6	In the colony area away from mine for Gravity head recharge tubewell.	10 Nos

 Table no. 4: Identification of area

These structures in respective areas will augment the ground water table and shall reduce load on the natural water courses for rural utility of irrigation amongst others.

In addition to the measures taken above, the area in proximity to Tamas River, Magardha Nala and Nar Nala will be provided with bunds above and beyond HFL. Safety barrier of 50 meters will be left our permanently. This barrier will be densely planted thus making the water courses totally immune from mining activities. No mine water will be discharged in the natural water courses without de-siltation in the settling ponds.

The garland drains with check dams are constructed all along the peripheries of the lease area. De-siltation of natural water ways up-stream and down-stream, will be undertaken after consultation with the authorities to keep the natural water courses healthy.

Periodical deepening of village ponds and de-siltation of the same will be carried out to augment water bodies in surrounding areas.

6. CONCLUSION AND REOCMMENDATION:

The natural water ways protection plan will be updated to accommodate new ideas and government water development programs. The present plan with all implementation will keep the natural water courses safe and healthy.

FORMAT NO. ECO/QS/FORMAT/23 REPORT NO: ECO LAB/Piezo/GW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

REPORT OF WATER LEVEL MEASUREMENT

Name of the Customer Address of the Customer	 M/s. Prism Johnson Ltd. Village - Mankahari, Tehsil - Rampur Baghelan Distt.Satna (M.P.)
Measurement by	: Mr. Maan Singh
Date of Measurement	: November 12 th , 2020

SI. No.	Piezometer Name.	Water Level (meter)
1.	Colony Gate	14.5
2.	Behind B Block	6.2
3.	Behind C Block	4.8
4.	Auto Work Shop	14.3
5.	In Front Den	5.1
6.	Rose Garden near boundary	20.4
7.	Rose Garden near Road	16.3
8.	Western Block Mines	18.3
9.	Near New Magzine Mines	12.5
10.	Mankahari Mines	16.7
11.	Mines near Ramprasan	8.5
12.	Piezo No12	12.5
13.	Piezo Rose Garden	20.4
14.	Piezo Rose Garden Near Road	16.3

Analyst

Authorized Signatory

inager (O)

Ecomen Laboratories Pvt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aligan, Lucknow-226024 Ph.2746282 Fax-2745726

200

ECOMEN LABORATORIES PVT. LTD.

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/RW/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company Address of the Company	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Raw Water (WHRS)

SL No. TESTS	TESTS	TESTS PROTOCOL		Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)		
					Desirable	Permissible	
			<5.0	5-100	5.00	15.0	
1.	Colour (Hazen unit)	APHA, 23rd Ed. 2017, 2120 B	BDL	1 - 100	1.0	5.0	
2	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	7.31	2.0 -12	6.5-8.5	No Relar.	
3.		APHA, 23 rd Ed. 2017, 4500H+ A+B		1-2000	-	-	
4.	Conductivity (µmhos/cm)	APHA, 23 ⁻⁴ Ed. 2017, 2510-A + B	833.0		500	2000	
	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	411.0	5 - 5000			
5.		APHA, 23" Ed. 2017, 2320 A+ B	108.0	5-1500	200	600	
6,	Alkalinity (mg/l)	APHA, 23" Ed. 2017, 2340 A+C	180.0	5-1500	200.0	600.0	
7.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23" Ed. 2017, 2340 A+C	131.76	5-1500	200,0	600.0	
â.	Non Corbonate as CaCO3	APHA, 23 rd Ed. 2017, 3500 Ca A+B	49.6	5-1000	75.0	200.0	
9.	Calcium as Ca (mg/l)		13.6	5-1000	30.0	100.0	
10.	Magnesium as Mg (mg/l)	APHA, 23" Ed. 2017, 3500 Mg A+B		1-100			
11.	Sodium as Na (mg/l)	APHA, 23rd Ed. 2017, 3500 Na, A+B	16.3				
12.	Potassium as K (mg/l)	APHA, 23rd Ed. 2017, 3500 K, A+B	1.02	1-100	-		
13.	Chloride as Cl (mg/l)	APHA, 23" Ed. 2017, 4500 CI A+B	34.0	5-1000	250.0	1000.0	
14.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	1.17	0.05-10	1.0	1.5	
15.	Sulfate as SO ₄ (mg/l)	APHA, 23" Ed. 2017, 4500-SO4" E	31.0	1.0 -250	200,0	400.0	
16.		APHA, 23" Ed. 2017, (4500 SiOr-C)	18.0	0.1-50		-	
17.	Nitrate Nitrogen as NO3 (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ B	5.20	5.0 - 100	45.0	No Relax	
18.	Iron as Fe (mg/l)	APHA, 23rd Ed. 2017, 3500 Fe B	0.32	0.02-50	0.3	No Relay	

*The result are related only to item tested. BDL = Below Detection Limit

astymos Analyst

Authorized signatory Ecomen-Laboratories Pvt. Ltd. Flat No.-8, 2nd Floor, Arif Chamber-V Sector-H, Aliganj, Lucknow-226024 Ph.-2746282, Fax:2745726

Ouality Manager

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	y: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Baghai Lime Stone Drinking water (Mine Site Office)
Sample ID Code	: ELW-12585

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDA 10500:1991(Re	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	BDL	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.44	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	393.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	160.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	188.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	43.2	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	19.44	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	22.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.37	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	37.4	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	9.65	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.16	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 - A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.23	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017(3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.20	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E. <i>coli</i> (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 LABORATORIES P Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	:	M/s. Prism Johnson Ltd.
Address of the Company	:	Village Mankahari, Tehsil Rampur Baghelan
		Distt.Satna (M.P.)
Sampling Method	:	APHA/ IS: 3025
Sample Collected by	:	Mr.Maan Singh
Sample Quantity	:	As per requirement.
Date of Sampling	:	12.11.2020
Date of Receiving	:	15.11.2020
Date of Analysis	:	15.11.2020 to 25.11.2020
Source of Sample	:	Plant Site - Bore Well
Sample ID Code	:	ELW-12586

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDA 10500:1991(Re	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	BDL	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.29	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	532.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	128.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	192.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	48.0	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	17.49	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	36.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.35	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	92.3	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	10.23	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.11	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A+B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.25	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.15	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Analyst

Authorized Signatory

ECOMEN

٦

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	:	M/s. Prism Johnson Ltd.		
Name of the Company	:	M/s. Prism Johnson Ltd.		
Address of the Company	:	Village Mankahari, Tehsil Ran	mpur Bagh	elan
		Distt.Satna (M.P.)		
Sampling Method	:	APHA/ IS: 3025		
Sample Collected by	:	Mr.Maan Singh		
Sample Quantity	:	As per requirement.		
Date of Sampling	:	12.11.2020		
Date of Receiving	:	15.11.2020		
Date of Analysis	:	15.11.2020 to 25.11.2020		
Source of Sample	:	Bagahai Village – Hand Pum	р	
Sample ID Code		ELW-12587		

Sl. No.	TESTS	TESTS PROTOCOL		Detection Range	INDIAN STANDA 10500:1991(F	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.3	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.42	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	496.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	164.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	176.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	46.4	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	14.58	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	30.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.26	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	51.5	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	12.1	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.13	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A+B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	BDL	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.20	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Analyst

Authorized Signatory

Ecomen Laboratories i'vt. Ltd. Hut No.8 Second Floor Arit Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726

eco/Men LABORATORIES PVT LTD.

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 LABORATORIES P Phone No. : (91-522) 2746282, 2745726 Telefax No.: : (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20

TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Prism Lime Stone Mine Drinking Water (Site Office)
Sample ID Code	: ELW-12588

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)		
					Desirable	Permissible	
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0	
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable	
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable	
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	BDL	1 - 100	1.0	5.0	
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.46	2.0 -12	6.5-8.5	No Relax.	
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	432.0	5 - 5000	500	2000	
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	156.0	5-1500	200	600	
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	240.0	5-1500	200.0	600.0	
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	59.2	5 - 1000	75.0	200.0	
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	22.35	5-1000	30.0	100.0	
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	52.0	5-1000	250.0	1000.0	
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.31	0.05-10	1.0	1.5	
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	86.3	1.0 -250	200.0	400.0	
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	7.32	5.0 - 100	45.0	No Relax.	
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30	
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-50	5.0	15	
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.	
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax	
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax	
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05	
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A+B	BDL	0.04-10	0.05	No Relax	
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.	
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5	
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.25	0.2 - 10	0.5	1.0	
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2	
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0	
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax	
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-	
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.23	0.02-50	0.3	No Relax.	
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent	
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent	

Authorized Signatory

...

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 LABORATORIES P Phone No. : (91-522) 2746282, 2745726 Telefax No.: : (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	:	M/s. Prism Johnson Ltd.
Address of the Company	<i>'</i> :	Village Mankahari, Tehsil Rampur Baghelan
		Distt.Satna (M.P.)
Sampling Method	:	APHA/ IS: 3025
Sample Collected by	:	Mr.Maan Singh
Sample Quantity	:	As per requirement.
Date of Sampling	:	12.11.2020
Date of Receiving	:	15.11.2020
Date of Analysis	:	15.11.2020 to 25.11.2020
Source of Sample	:	MedhiVillage -Hand Pump
Sample ID Code	:	ELW-12589

SI. No.	TESTS	PROTOCOL RESULT		Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012) Desirable Permissible		
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0	
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable	
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable	
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.21	1 - 100	1.0	5.0	
5.	рН	APHA, 23 rd Ed. 2017, 4500H ⁺ A+B	7.18	2.0 -12	6.5-8.5	No Relax.	
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	365.0	5 - 5000	500	2000	
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	136.0	5-1500	200	600	
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	168.0	5-1500	200.0	600.0	
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	38.4	5 - 1000	75.0	200.0	
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	17.49	5-1000	30.0	100.0	
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	32.0	5-1000	250.0	1000.0	
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.36	0.05-10	1.0	1.5	
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	61.5	1.0 -250	200.0	400.0	
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	8.63	5.0 - 100	45.0	No Relax.	
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30	
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-50	5.0	15	
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.	
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax	
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax	
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05	
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 - A+B	BDL	0.04-10	0.05	No Relax	
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.	
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5	
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.22	0.2 - 10	0.5	1.0	
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2	
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0	
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax	
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-	
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.19	0.02-50	0.3	No Relax.	
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent	
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent	

*The result are related only to item tested. BDL = Below Detection Limit

Analyst

Authorized Signatory

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 LABORATORIES P Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	y: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Malgaon Village – Hand Pump
Sample ID Code	: ELW-12590

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012) Desirable Permissible	
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA. 23 rd Ed. 2017. A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	BDL	1 - 100	1.0	5.0
5.	pH	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.38	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	569.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	166.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	212.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	449.6	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	21.38	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	28.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.34	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	67.4	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	21.2	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.16	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A+B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	BDL	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.20	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ECOMEN

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 LABORATORIES P Phone No. : (91-522) 2746282, 2745726 Telefax No.: : (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	:	M/s. Prism Johnson Ltd.
Address of the Company	:	Village Mankahari, Tehsil Rampur Baghelan
		Distt.Satna (M.P.)
Sampling Method	:	APHA/ IS: 3025
Sample Collected by	:	Mr.Maan Singh
Sample Quantity	:	As per requirement.
Date of Sampling	:	12.11.2020
Date of Receiving	:	15.11.2020
Date of Analysis	:	15.11.2020 to 25.11.2020
Source of Sample	:	Badarkha Village – Bore Well
Sample ID Code	:	ELW-12591

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.43	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.11	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	571.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	152.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	204.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	52.8	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	17.49	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	24.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.20	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	93.3	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	12.3	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.21	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A+B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.26	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.12	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Address of the Company : Village Mankahari, Tehsil Rampur Baghelan	l
Thun cas of the Company . I mage Mankanan, Tensh Rampar Daghetan	
Distt.Satna (M.P.)	
Sampling Method : APHA/ IS: 3025	
Sample Collected by : Mr.Maan Singh	
Sample Quantity : As per requirement.	
Date of Sampling : 12.11.2020	
Date of Receiving : 15.11.2020	
Date of Analysis : 15.11.2020 to 25.11.2020	
Source of Sample : Mankahari Village – Hand Pump	
Sample ID Code : ELW-12592	

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STAND 10500:1991(F Desirable	
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.05	1 - 100	1.0	5.0
5.	pH	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.21	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	678.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	180.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	296.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	76.8	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	25.27	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	50.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.48	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	98.0	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	13.4	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.22	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 - A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23rd Ed. 2017, 4500 B A+C	0.21	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.17	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	y: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: PCL Colony Supply Water – Bore Well
Sample ID Code	: ELW-12593

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDA 10500:1991(R Desirable	
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA. 23 rd Ed. 2017. 2130-A+B	1.21	1 - 100	1.0	5.0
5.	pH	APHA, 23 rd Ed. 2017, 4500H+ A+B	6.97	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	601.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	140.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	284.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	72.0	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	25.27	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	64.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.37	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	108.0	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	13.26	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.12	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A+B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	BDL	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.23	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested.BDL = Below Detection Limit

Authorized Signatory

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Mines Site Office HinautiSijatah
Sample ID Code	: ELW-12594

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDA 10500:1991(Re	aff:2012)
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.20	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.59	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	486.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	152.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	220.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	58.4	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	17.98	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	40.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.29	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	48.8	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	9.21	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A+B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.24	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.09	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Chullhi Village – Bore Well
Sample ID Code	: ELW-12595

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDA 10500:1991(R	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.03	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.28	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	431.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	158.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	266.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	54.4	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	31.59	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	78.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.39	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	105.5	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	16.1	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.20	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.22	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.17	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	y: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Hinauta Village – Bore Well
Sample ID Code	: ELW-12596

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.32	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.53	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	390.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	144.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	228.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	59.2	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	19.44	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	36.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.37	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	98.3	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	9.5	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.09	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 - A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.20	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.12	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.	
Address of the Company	y: Village Mankahari, Tehsil Rampur Baghelan	
	Distt.Satna (M.P.)	
Sampling Method	: APHA/ IS: 3025	
Sample Collected by	: Mr.Maan Singh	
Sample Quantity	: As per requirement.	
Date of Sampling	: 12.11.2020	
Date of Receiving	: 15.11.2020	
Date of Analysis	: 15.11.2020 to 25.11.2020	
Source of Sample	: Bore well at Project Office	
Sample ID Code	: ELW-12597	

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.22	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.25	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	344.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	136.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	204.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	46.4	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	21.38	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	51.1	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.39	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO4 ²⁻ E	69.5	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	17.5	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.16	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A+B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.26	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.20	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Plant Pump House
Sample ID Code	: ELW-12598

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	<1.0	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.24	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	379.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	124.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	216.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	56.0	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	18.46	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	48.02	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.30	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	43.22	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	12.6	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.17	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A+B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.27	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.10	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

ecoMen

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*

Name of the Company	:	M/s. Prism Johnson Ltd.
Address of the Company	y :	Village Mankahari, Tehsil Rampur Baghelan
		Distt.Satna (M.P.)
Sampling Method	:	APHA/ IS: 3025
Sample Collected by	:	Mr.Maan Singh
Sample Quantity	:	As per requirement.
Date of Sampling	:	12.11.2020
Date of Receiving	:	15.11.2020
Date of Analysis	:	15.11.2020 to 25.11.2020
Source of Sample	:	Packing Plant Unit-I
Sample ID Code	:	ELW-12599

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)	
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	Desirable 5.00	Permissible 15.0
2.	Odour	APHA, 23 ^{-Ed.} 2017, 2120 B APHA, 23 rd Ed. 2017, 2150 B				
		APHA, 23 Ed. 2017, 2150 B APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste		Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.05	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.37	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	343.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	128.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	220.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	57.6	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	18.46	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	52.2	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.36	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	49.6	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	17.4	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.13	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 – A+B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.23	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.16	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested.BDL = Below Detection Limit

Authorized Signatory

ecoMen

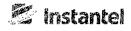
Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,G5TIN : 09AAACE6076H1Z1

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF DRINKING WATER*


Name of the Company	: M/s. Prism Johnson Ltd.
Address of the Company	y: Village Mankahari, Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 12.11.2020
Date of Receiving	: 15.11.2020
Date of Analysis	: 15.11.2020 to 25.11.2020
Source of Sample	: Sijhata Village – Bore Well
Sample ID Code	: ELW-12600

Sl. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff:2012)	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1.28	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.09	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	377.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	140.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	260.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	60.8	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23 rd Ed. 2017, 3500 Mg A+B	26.24	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 rd Ed. 2017, 4500 Cl A+B	74.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.37	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	91.1	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ ⁻ B	8.63	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	0.13	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 - A+B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23 rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.26	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23 rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10	-	-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.14	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested. BDL = Below Detection Limit

Authorized Signatory

Velocity (mm/s)

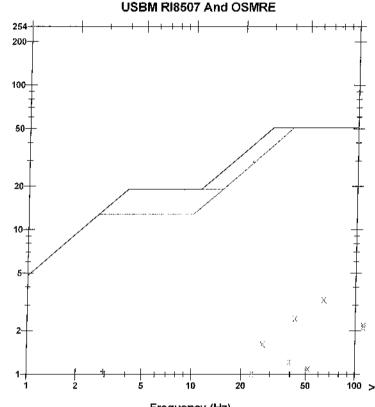
Date/Time	Vert at 12:22:03 April 1, 2019
Trigger Source	Geo: 0.900 mm/s, Mic: 2.000 pa.(L)
Range	Geo : 254.0 mm/s
Record Time	1.75 sec at 1024 sps
Operator/Setup:	Operator/SSB.MMB

Notes

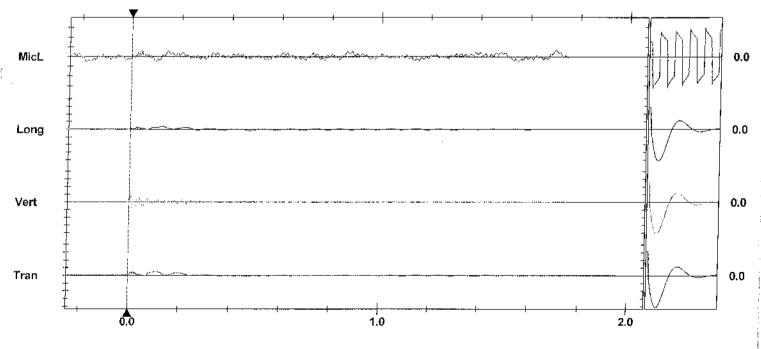
Location: Client: User Name: PRISM:CEMENT:LTD General:

Extended Notes

PRISM CEMENT LIMESTONE MINES


MicrophoneLinear WeightingPSPL0.683 pa.(L) at 0.042 secZC Freq20 HzChannel TestPassed (Freq = 19.7 Hz Amp = 1270 mv)

	Tran	Vert	Long	
PPV	1.048	3.310	0.859	mm/s
ZC Freq	2.9	64	5.3	Hz
Time (Rel. to Trig)	0.106	0.003	0.126	. sec
Peak Acceleration	0.034	0.267	0.048	g
Peak Displacement	0.045	0.013	0.020	mm
ensor Check	Passed	Passed	Passed	
Frequency	7.3	7.7	7.3	Hz
Overswing Ratio	3.5	3.3	3.6	


Peak Vector Sum 3.313 mm/s at 0.003 sec

Serial NumberUM8131 V 10-76 Micromate ISEEBattery Level3.8 VoltsUnit CalibrationFebruary 26, 2018 by UES New DelhiFile NameUM8131_20190401122203.IDFWScaled Distance16.9 (100.0 m, 35.0 kg)Post Event NotesEastern block 2nd bench. No of bales -34 pag. Depth - 7 Mth

Eastern block 2nd bench. No of holes -34 nos, Depth - 7 Mtrs Charge/delay - 25 Kg/delay, Obsevation Distance - 200 Mtr

Frequency (Hz) Tran: + Vert: × Long: ø

Sensor Check

Printed: April 16, 2019 (V 10.72 - 10.72)

Format © 1995-2014 Xmark Corporation

 Date/Time
 Tran at 11:46:51 April 9, 2019

 Trigger Source
 Geo: 0.900 mm/s, Mic: 2.000 pa.(L)

 Range
 Geo: 254.0 mm/s

 Record Time
 3.75 sec at 1024 sps

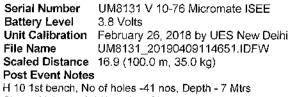
 Operator/Setup:
 Operator/SSB.MMB

Notes

ĺ

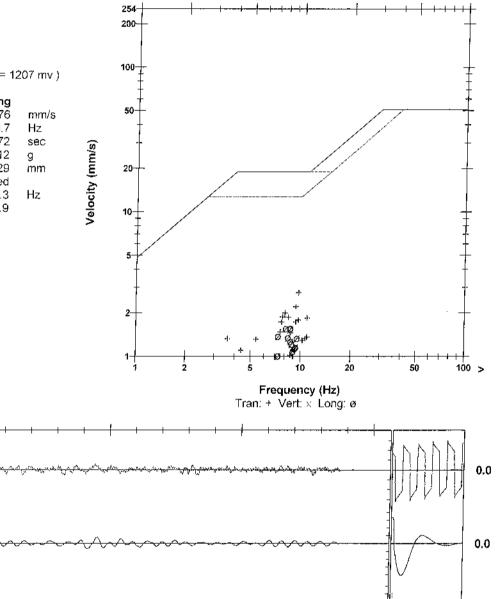
MicL

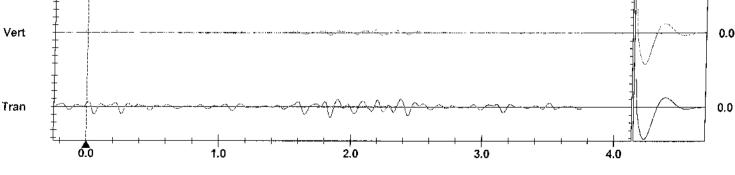
Long


Location: Client: User Name: PRISM:CEMENT:LTD General:

Extended Notes PRISM CEMENT LIMESTONE MINES

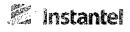
MicrophoneLinear WeightingPSPL0.574 pa.(L) at 1.888 secZC Freq6.7 HzChannel TestPassed (Freq = 19.7 Hz Amp = 1207 mv)


	Tran	Vert	Long	
PPV	2.759	0.749	1.576	mm/s
ZC Freq	9.7	19	8.7	Hz
Time (Rel. to Trig)	1.841	2.180	0.272	sec
Peak Acceleration	0.019	0.012	0.012	g
 Peak Displacement 	0.043	0.019	0.029	mm
ensor Check	Passed	Passed	Passed	
Frequency	7.3	7.5	7.3	Hz
Overswing Ratio	3.4	3.4	3.9	


Peak Vector Sum 3.135 mm/s at 1.841 sec

Charge/delay - 45.4 Kg/delay, Obsevation Distance - 200 Mtr

USBM RI8507 And OSMRE



Time Scale: 0.20 sec/div Amplitude Scale: Geo; 2.000 mm/s/div Mic; 1.000 pa.(L)/div Trigger =.

Sensor Check

Printed: April 27, 2019 (V 10.72 - 10.72)

Format © 1995-2014 Xmark Corporation

Date/Time	Tran at 10:30:03 April 5, 2019
Trigger Source	Geo: 0.900 mm/s, Mic: 2.000 pa.(L)
Range	Geo : 254.0 mm/s
Record Time	5.0 sec at 1024 sps
Operator/Setup:	Operator/SSB.MMB

Notes

MicL

Long

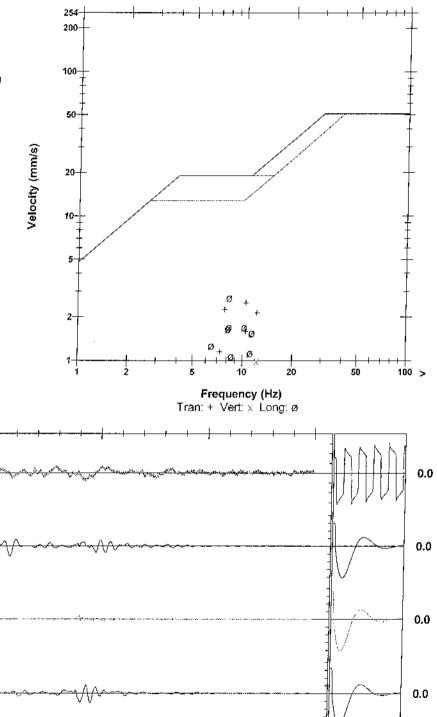
Vert

Tran

Location: Client: User Name: PRISM:CEMENT:LTD General:

Extended Notes PRISM CEMENT LIMEST

PRISM CEMENT LIMESTONE MINES


Microphone	Linear Weighting
PSPL	0.822 pa.(L) at 2.860 sec
ZC Freq	3.3 Hz
Channel Test	Passed (Freg = 19.7 Hz Amp = 1227 my)

	Tran	Vert	Long	
PPV	2.491	1.001	2,703	mm/s
ZC Freq	10	12	8.3	Hz
Time (Rel. to Trig)	2.941	2.795	2.154	sec
Peak Acceleration	0.024	0.037	0.016	g
Peak Displacement	0.044	0.010	0.050	mm
Jensor Check	Passed	Passed	Passed	
Frequency	7.3	7.7	7. 1	Hz
Overswing Ratio	3.6	3.3	3.6	

Peak Vector Sum 2.743 mm/s at 2.155 sec

Serial NumberUM8131 V 10-76 Micromate ISEEBattery Level3.8 VoltsUnit CalibrationFebruary 26, 2018 by UES New DelhiFile NameUM8131_20190405103003.IDFWScaled Distance16.9 (100.0 m, 35.0 kg)Post Event NotesSijhata 3rd bench, No of holes -28 nos, Depth - 6 MtrsCharge/delay - 16 Kg/delay, Obsevation Distance - 250 Mtr

USBM RI8507 And OSMRE

4.0

Time Scale: 0.20 sec/div Amplitude Scale: Geo: 2.000 mm/s/div Mic: 1.000 pa.(L)/div Trigger =

2.0

1.0

Sensor Check

5.0

Printed: April 27, 2019 (V 10.72 - 10.72)

0.0

Format © 1995-2014 Xmark Corporation

3.0

Date/Time	Vert at 11:32:31 April 5, 2019
Trigger Source	Geo: 0.900 mm/s, Mic: 2.000 pa.(L)
Range	Geo : 254.0 mm/s
Record Time	5.0 sec at 1024 sps
Operator/Setup:	Operator/SSB.MMB

Notes

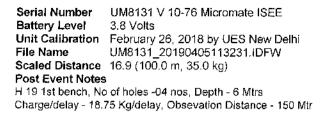
MicL

Long

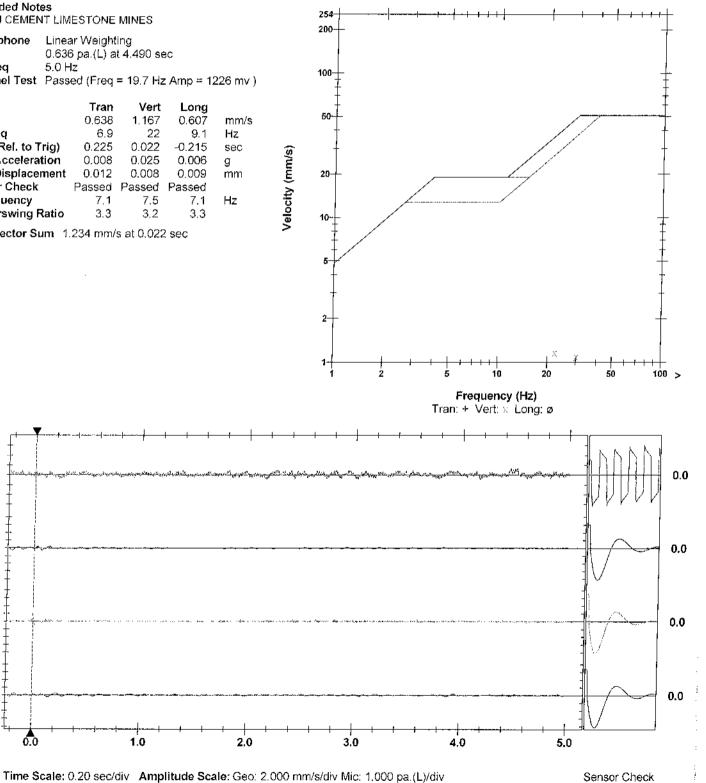
Vert

Tran

Location: Client: User Name: PRISM:CEMENT:LTD General:


Extended Notes

PRISM CEMENT LIMESTONE MINES


Microphone	Linear Weighting
PSPL	0.636 pa.(L) at 4.490 sec
ZC Freq	5.0 Hz
Channel Test	Passed (Freq = 19.7 Hz Amp = 1226 my)

	Tran	Vert	Long	
PPV	0.638	1,167	0.607	mm/s
ZC Freq	6.9	22	9.1	Hz
Time (Rel. to Trig)	0.225	0.022	-0.215	sec
Peak Acceleration	0.008	0.025	0.006	g
Peak Displacement	0.012	0.008	0.009	mm
Jensor Check	Passed	Passed	Passed	
Frequency	7,1	7.5	7.1	Hz
Overswing Ratio	3.3	3.2	3.3	

Peak Vector Sum 1.234 mm/s at 0.022 sec

USBM RI8507 And OSMRE

Trigger = 🕨 Printed: April 27, 2019 (V 10.72 - 10.72)

0.0

Format © 1995-2014 Xmark Corporation

Velocity (mm/s)

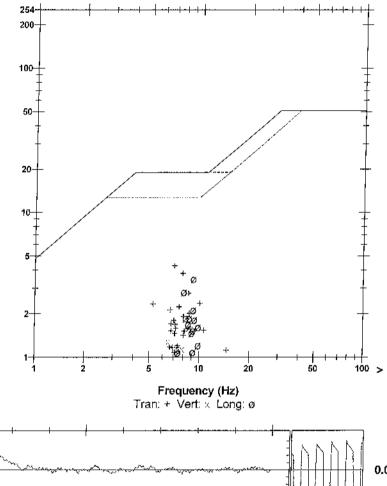
Notes

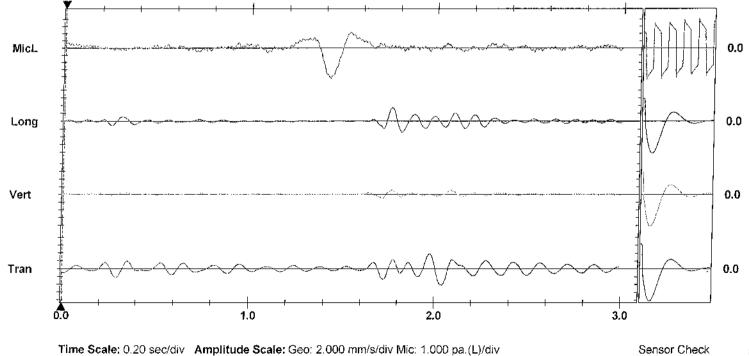
Location: Client: User Name: PRISM:CEMENT:LTD General;

Extended Notes

PRISM CEMENT LIMESTONE MINES

MicrophoneLinear WeightingPSPL4.220 pa.(L) at 1.423 secZC Freq4.0 HzChannel TestPassed (Freq = 19.7 Hz Amp = 1217 mv)


	Tran	Vert	Long	
PPV	4.272	1.293	3.476	mm/s
ZC Freq	7.0	6.5	9.1	Hz
Time (Rel. to Trig)	2.043	1.714	1.760	sec
Peak Acceleration	0.028	0.023	0.022	g
Peak Displacement	0.097	0.022	0.061	mm
ensor Check	Passed	Passed	Passed	
Frequency	7.3	7.7	7.1	Hz
Overswing Ratio	3.4	3.2	3.6	


Peak Vector Sum 4.517 mm/s at 2.043 sec

Serial NumberUM8131 V 10-76 Micromate ISEEBattery Level3.8 VoltsUnit CalibrationFebruary 26, 2018 by UES New DelhiFile NameUM8131_20190406104218./DFWScaled Distance16.9 (100.0 m, 35.0 kg)Post Event Notes7050 2nd bench, No of holes -36 nos, Depth - 6.5 Mtrs

Charge/delay - 32.5 Kg/delay, Obsevation Distance - 200 Mtr

USBM RI8507 And OSMRE

Trigger = 🕨------

Format © 1995-2014 Xmark Corporation

Velocity (mm/s)

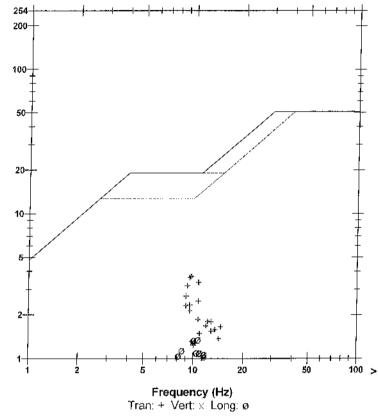
Date/Time	Tran at 10:32:26 April 8, 2019
Trigger Source	Geo: 0.900 mm/s, Mic: 2.000 pa.(L)
Range	Geo : 254.0 mm/s
Record Time	1.75 sec at 1024 sps
Operator/Setup:	Operator/SSB.MMB

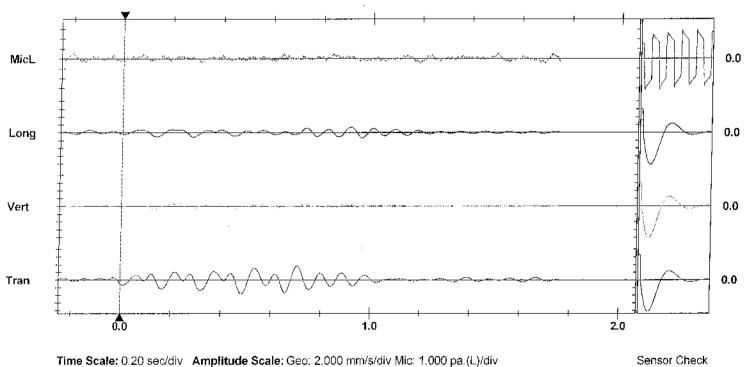
Notes

Location: Client: User Name: PRISM:CEMENT:LTD General:

Extended Notes

PRISM CEMENT LIMESTONE MINES


MicrophoneLinear WeightingPSPL0.621 pa.(L) at -0.205 secZC Freq10 HzChannel TestPassed (Freq = 19.7 Hz Amp = 1210 mv)


	Tran	Vert	Long	
PPV	3.681	0.891	1.356	mm/s
ZC Freq	9.7	8.8	11	Hz
Time (Rel. to Trig)	0.705	0.134	0.959	sec
Peak Acceleration	0.026	0.014	0.012	g
Peak Displacement	0.060	0.019	0.025	mm
ensor Check	Passed	Passed	Passed	
Frequency	7.3	7.7	7.1	Hz
Overswing Ratio	3.5	3.3	3.5	

Peak Vector Sum 3.697 mm/s at 0.705 sec

Serial NumberUM8131 V 10-76 Micromate ISEEBattery Level3.8 VoltsUnit CalibrationFebruary 26, 2018 by UES New DelhiFile NameUM8131_20190408103226.IDFWScaled Distance16.9 (100.0 m, 35.0 kg)Post Event NotesEPR 2nd bench, No of holes -32 nos, Depth - 6.5 MtrsCharge/delay - 17.9 Kg/delay, Obsevation Distance - 150 Mtr

USBM RI8507 And OSMRE

Trigger = ------

Tran at 10:34:05 April 9, 2019 Date/Time Geo: 0.900 mm/s, Mic: 2.000 pa.(L) **Trigger Source** Range Geo: 254.0 mm/s 3.25 sec at 1024 sps **Record Time** Operator/Setup: Operator/SSB.MMB

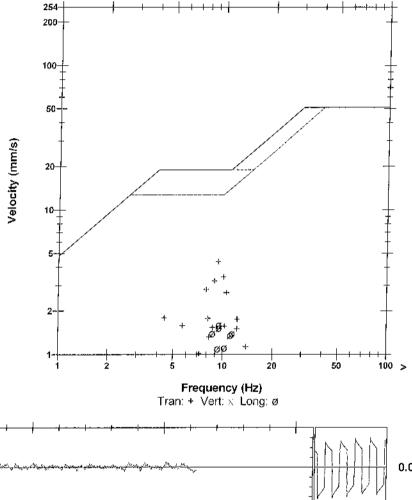
Notes

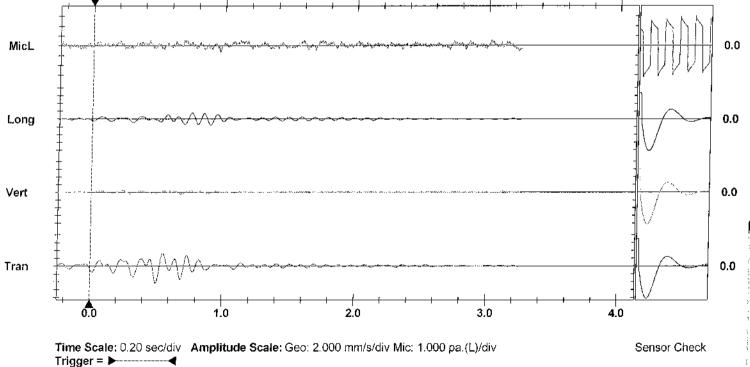
Location: Client: User Name: PRISM:CEMENT:LTD General:

Extended Notes

PRISM CEMENT LIMESTONE MINES

Microphone	Linear Weighting
PSPL	0.714 pa.(L) at 0.962 sec
ZC Freq	11 Hz
Channel Test	Passed (Freq = 19.7 Hz Amp = 1205 mv)


	Tran	Vert	Long	
PPV	4.398	0.631	1.608	mm/s
ZC Freq	9.3	7.0	9.5	Hz
Time (Rel. to Trig)	0.501	0.303	0.896	sec
Peak Acceleration	0.027	0.016	0.013	g
Peak Displacement	0.073	0.013	0.026	mm
ensor Check	Passed	Passed	Passed	
Frequency	7.3	7.7	7.1	Hz
Overswing Ratio	3.4	3.2	3.3	


Peak Vector Sum 4.437 mm/s at 0.501 sec

UM8131 V 10-76 Micromate ISEE Serial Number 3.8 Volts Battery Level February 26, 2018 by UES New Delhi UM8131_20190409103405.IDFW Unit Calibration File Name Scaled Distance 16.9 (100.0 m, 35.0 kg) Post Event Notes H 16 1st bench, No of holes -43 nos, Depth - 7 Mtrs

Charge/delay - 32.56 Kg/delay, Obsevation Distance - 200 Mtr

USBM RI8507 And OSMRE

Printed: April 27, 2019 (V 10.72 - 10.72)

Format © 1995-2014 Xmark Corporation

An Analysis to Monitor the chage in Land Use / Land Cover using Remote Sensing & GIS Technique <u>Final Report</u>

" Digital Processing of Mining Leases- 772Ha, 512Ha, 117Ha & 99Ha using Remote Sensing Technique for fulfillment of EC Compliance of Cement Unit Plant II and Intregrated Mines." for Prism Johnson Ltd (Formerly Prism cement Ltd) in Satna, Madhya Pradesh.

Submitted By: SPA GEO TECHNOLOGIES PVT LIMITED 8A, 3rd Floor, Mahaluxmi Metro Tower, C2,

Sector -4, Vaishali, NCR, Ghaziabad - 201012 URL: <u>www.spageo.co.in</u> Email: <u>info@spageo.co.in</u> ; <u>alok@spageo.co.in</u> Tel: 91-120-4567200, Fax: 91-120-4567100 Purchase Order PO No : 3100157191 - P200 PO Date : 22.06.2020

Contents

1. Introd		duction	4
	1.1.	Scope of Work	5
	1.2.	Objectives	5
	1.3.	Software	5
	1.4.	Study Area	5
	1.5.	Location Map	7
	1.6.	Satellite Image of Study Area	
		1.6.3. Satellite Image of 2020	8
2.	APPRO	DACH & METHODOLOGY	9
	2.1.	Flow Chart	10
	2.2.	Data Procurement	11
	2.3.	Satellite Data Processing	11
	2.4.	Rectification & Geo-referencing	11
	2.5.	Image enhancement	11
	2.6.	Classification and Accuracy assessment	11
	2.7.	Area Calculation	11
	2.8.	Overlay of Vector data base	11
	2.9.	Field Survey Images	12-14
	2.10.	Finding of Study	15
		2.10.1. Baghai Lime stone Mine 2020 (512.317)	15
		2.10.2. Mendhi Lime stone 2020 (117)	16
		2.10.3. Hinouti & Sijhatta Lime stone Mine 2020 (772.067& 99.416)	16
		2.10.4. Land use/Land Cover Map Of Buffer Zone 2020	17

3. Conclusion

18

Table

Table 1.	Details of Study Area	6
Table 2.	Baghai Lime Stone Mine Area Sheet 2020	15
Table 3.	Mendhi Lime Stone Mine Area Sheet 2020	16
Table 4.	Hinouti & Sijhatta Lime Stone Mine Area Sheet 2020	16
Table 5.	Land Use/Land Cover Map Of Buffer Zone with 10 Sq.km.	17

Figure

Figure 1.	Satellite Image of Mine Area 2020	8
Figure 2.	Baghai Lime Stone Mine Area Map of 2020	19
Figure 3.	Mendhi Lime Stone Mine Area Map of 2020	20
Figure 4.	Hinouti & Sijhatta Lime Stone Mine Area Map of 2020	21
Figure 5.	Land Use/Land Cover Map Of Buffer Zone with 10 Sq.km (2020)	22

1. Introduction

Prism Johnson Limited is professionally managed Company promoted by the Rajan Raheja Group. Prism Johnson Limited is India's largest integrated Building Materials Company with a wide range from cement, ready-mixed concrete, tiles, bath products to kitchens. The Company has three Divisions, viz. Prism Cement, H & R Johnson (India), and RMC Readymix (India). Prism Cement primarily caters to the demand in the Northern Region, mainly in the States of Uttar Pradesh, Bihar and Madhya Pradesh. The capacity expansion has established the Division's brand in new markets and to a larger consumer base. A team of experienced engineers and a dedicated workforce combined with a high level of automation and sophisticated control systems have placed the Division's products in the premium segment.

Prism Johnson Ltd (Formerly Prism cement Ltd) commenced its production in August 1997 and manufactures Portland Pozzollana Cement (PPC) with the brand name 'Champion' and Ordinary Portland Cement (OPC). It has the highest quality standards due to efficient plant operations with automated controls. It caters mainly to markets of UP, MP and Bihar, with an average lead of 340–370 km of its plant at Satna, MP. It has a wide marketing network with about 2,000 dealers serviced from 46 stocking points.

Cement and mining is seventh of the core industries that contribute significantly to the economic development of India . As for environment point of view, Line stone mining and installation of cement plant is a major habitat transforming activity is lead to change in land Use/Land cover. The change have been described as the most significant regional anthropogenic disturbance to the environment and are consistently with mining of natural resources.

Remote sensing and geographic information system (GIS) are important tool for studying the land use pattern and their dynamic . The change detection in Land use /land cover due to natural and human activities can be monitored by using multi date image to evaluate difference in land cover . The mapping of land use of classes and monitoring their changes with time has been widely recognized. The change detection in Land use/ Land cover due to natural and human activities can be monitored by using multi date images to evaluate differences in land cover where lime stone mines 772.067 HA, 512.317 HA, 117.594 HA & 99.416 HA and Cement Unit II are under operation by using multi temporal remote sensing data.

The concept, method and application of land use/land cover studies are introduced to mining area in order to find the land use change and give support to land management and ecological reconstruction. its prerequisite for planning, policy making and developmental program that land use /land cover information its spatial distribution and change in land use pattern is commonly used.

1.1 Scope of work

1. Collection of Primary data - Raw satellite data to be obtained from NRSC.

2. Base map to be prepared with help of survey of India Toposheet G44U14, G44V2 and other details.

3. Data processing including following steps with the help of application software

- a. Geometric correction, rectification and Geo referencing .
- b. Image enhancement.
- c. Training set selection.
- d. Signature generation and classification.
- e. Validation of classification image.
- f. Final thematic map preparation.
- **4**. The map to be prepared on scale of 1:50000.
- 5. Comparative study with respect to land use change in the last three years.

1.2. Objectives

The main objective of present study is to understand land use /land cover change in the time and space , with special reference to the cement & mining activities being carried by M/s Prism Johnson Ltd (Formerly Prism cement Ltd), which is also one of the special condition of the environment clearance issued.

1.3. Software Used

- 1. ArcGIS 10.3
- 2. ERDAS Imagine
- 3. Microsoft Office

1.4. Study Area

The study area lies in Tehsil-Rampur baghelan, Satna district (MP) where cement Plant-II. The area is well connected to broad gauge line of central railway Linking ,satna with Rewa. The nearest major railhead is Satna on the jabalpur- Allahabad board guge section of central railway and is well connected to the major cities of the country. There is a good network of roads, there is an all weather motor able road up to project site. it is 22 km. from Satna city and 3 Km. from Satna - Rewa highway.

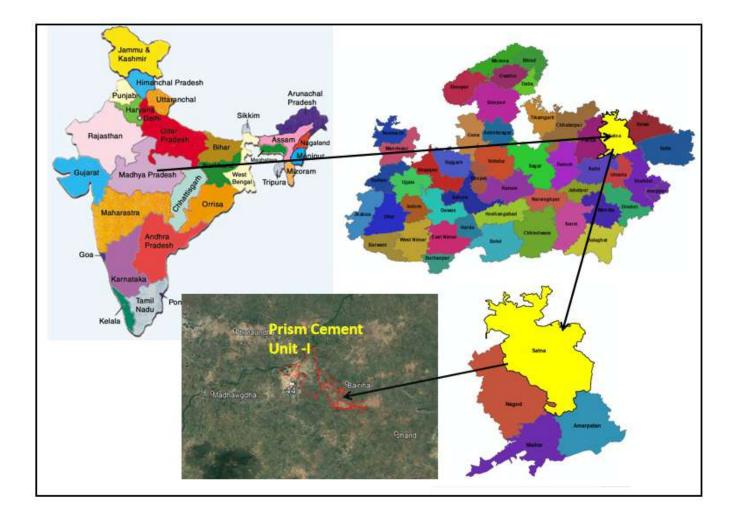
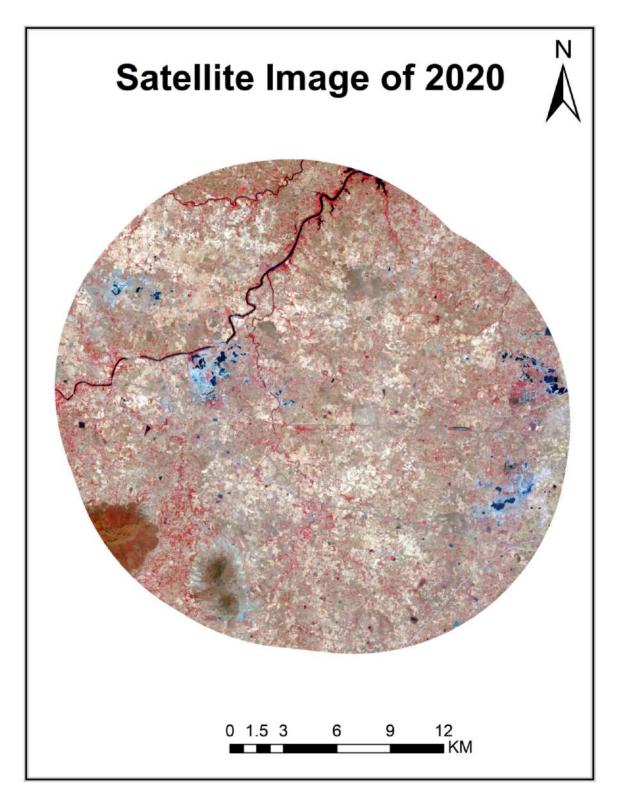

The details of the Mine lease areas are listed in the Table 1:

Table - 1

Details	Cement Plant	Hinouti & Sijhatta	Mendhi Lime	Baghai Limestone
		Lime stone	stone Mine	Mine (512.317)
		(772.067 & 99.416)	(117.594)	
Village	Mankhari	Hinouti & Sijhatta	Mendhi	Baghai
Tehsil	Rampur,Baghelan	Rampur,Baghelan	Rampur,Baghelan	Rampur,Baghelan
District	Satna	Satna	Satna	Satna
State	Madhya Pradesh	Madhya Pradesh	Madhya Pradesh	Madhya Pradesh

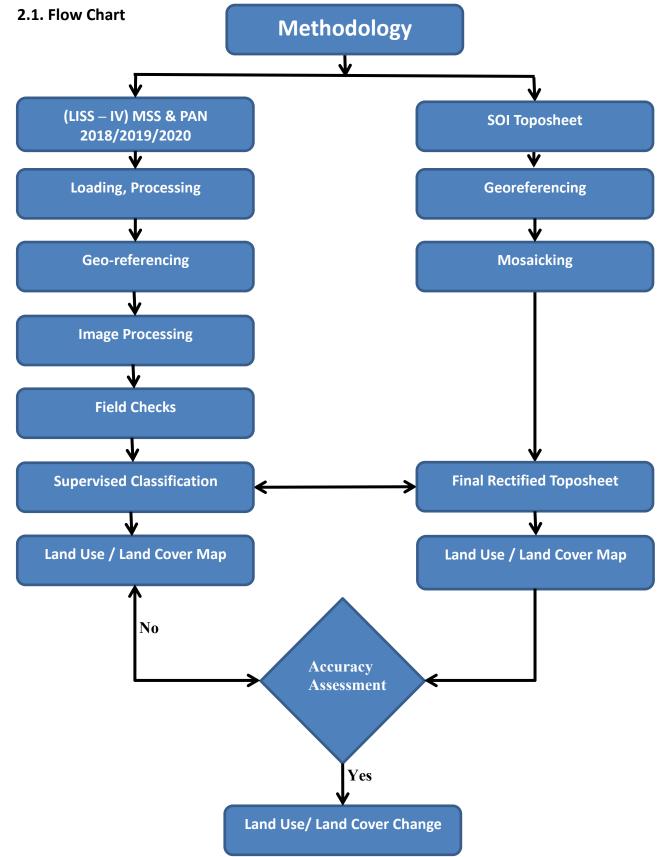
Toposheet No.	G44U14 &G44V2	G44U14 &G44V2	G44V2	G44V2
National	N.H 39 Gwalior to Rewa			
Highway				
Nearest River	Tamas River 2.15	Adjecnt to the	Tamas River 3.5	Tamas River:
	Km.	boundary (In NW	Km. (NW of	4 Km. (NW of
		direction)	Baghai)	Baghai)
Latitude	24°33'32.3"N	24°33'20.71"N	24°34'15.3."N	24°33'20.71"N
Longitude	80°59'34.12"E	80°59'20"E	81°02'26.1"E	81°04'47.8"E
Nearest Town	Satna (21 km)	Satna (18 Km)	Satna (24 Km)	Satna (23 Km)
		Towards west	Towards west	Towards west
Nearest Railway	Satna railway	Satna on the	Satna on the	Satna on the
station	station (20Km.)	jabalpur-	jabalpur-	jabalpur-
		Allahabad board	Allahabad board	Allahabad board
		gauge section of	gauge section of	gauge section of
		west central	west central	west central
		Railway (18 KM.)	Railway (22 KM.)	Railway (20 KM.)
Nearest Airport	Khajuraho (120	Khajuraho (120		
	Km.)	Km.)		


1.5. Location Map

1.6. Satellite Image of Study Area

2. APPROACH & METHODOLOGY

Indian remote sensing satellite LISS-IV MSS & PAN geocoded data were used to analyze the land use/land cover pattern. The present study utilizes multi-spectral/multi-temporal data of the Indian remote sensing satellite LISS-IV MSS & PAN for thematic mapping. Survey of India toposheet G44U14 & G44V2 on scale 1:50,000 were used for preparation of base map which was overlay on the LISS-IV for land use /land cover mapping through visual interpretation. Visual interpretation of satellite imagery lead to the identification of fifteen land use/land cover categories. The ground troth verification was carried out in the key areas to rectify the errors in generated maps and then land use/land cover maps were finalized.


Data available gives uniform spectral and radiometric characteristics and minimize the seasonal variation. The survey of India topographic sheets No. G44U14 & G44V2 on scale 1:50,000 were used for preparation of base map. Secondary data obtained from published material. Visual interpretation is the effective method for classifying land use/land cover especially when the analyst is familiar with the area being classified from satellite data.

These categories were identify on the basis of visual interpretation of satellite data and ground truth verification were done in the key areas for editing and authentication. On screen digitization technique has been carried out to digitize the maps using Arc Map 10.3 software for land use analysis.

There are number of steps involved between RAW satellite data procurement and preparation of final maps. National Remote sensing Centre (NRSC). Hyderabad, being the nodal agency for satellite data supply in India , Provides only RAW digital satellite data , which needs further digital image processing for extracting the information and map preparation before uploading the same in the website. Methodology for land reclamation is given table no.2

With the invent of remote sensing and Geographical Information System (GIS) techniques, land use/cover mapping has given a useful and detailed way to improve the selection of areas designed to agricultural, urban and/or industrial areas of a region. Application of remotely sensed data made possible to study the changes in land cover in less time, at low cost and with better accuracy in association with GIS that provides suitable platform for data analysis, update and retrieval. The advent of high spatial resolution satellite imagery and more advanced image processing and GIS technologies, has resulted in a switch to more routine and consistent monitoring and modeling of land use/land cover patterns. Remote-sensing has been widely used in updating land use/cover maps and land use/cover mapping has become one of the most important applications of remote sensing.

Final Report @ Spageo Technologies Pvt. Ltd.

2.2. Data Procurement:

After browsing the data quality and date of pass on internet, supply order for data is placed to NRSC. Secondary data like leasehold boundary, Toposheet are procured for creation of vector database.

2.3. Satellite Data Processing:

Satellite data are processed using *DIGITAL IMAGE PROCESSING SOFTWARE*. Mythology involves the following major steps.

2.4. Rectification & Geo-referencing:

Inaccuracies in digital imagery may occur to *systematic errors* attributes to earth curvature and ration as well as *non systematic errors* attributes to satellite receiving station itself. RAW digital contain geometric distortions, which make them unusable as maps. Therefore, Georeferencing is required for correction of image data using ground control points (GCP) to make it compatible to SOI toposheet.

2.5. Image enhancement:

To improve the interpret-ability of the raw data, image enhancement is necessary. Local operations modify the value of each pixel based on brightness pixels using *DIGITAL IMAGE PROCESSING SOFTWARE* and enhance the image quality for interpretation.

2.6. Classification and Accuracy assessment:

Image classification is carried out using the maximum likelihood algorithm. The classification proceeds through the following steps :

(A) calculation of statistics for the identified training area, and correlation matrix. After evaluating the statistical parameters of the training sets is conducted by measuring the statistical separation between the classes that resulted from computing divergence matrix. The overall accuracy of the classification was finally reference to ground truth data.

2.7. Area Calculation:

The area of each land use class in the leasehold is determined using DIGITAL IMAGE PROCESSING SOFTWARE.

2.8. Overlay of Vector data base:

Vector data base created based on secondary data. Vector layer like drainage, railway line, Lease boundary, mines area, forest boundary water body etc.

2.9. Field Survey:

Field survey was carried out by taking selective traverses in order to collect the ground information (or reference data).

spageo∜

spageo 🕅

PRISM JOHNSON LIMITED

(FORMERLY PRISM CEMENT LIMITED)

spageo ?

2.10. Finding of Study:

2.10.1. Baghai Lime Stone Mine

Land use /land cover information derived from IRS LISS-IV 2018, 2019 & 2020 (Table 3). Area statistic of each land use /land cover category were generated in GIS software and has been determined to analyze change in their spatial distribution. By comparing the land use/land cover maps, a change detection map has been generated in smart GIS software to assess the major changes in the Mines area **Baghai Lime Stone Mine (512.317).**

Table - 2 Baghai Lime Stone Mine Land use Details (512.317)(Fig.2)		
Description	2020 (Area In Ha)	
CropLand	4.5569	
Agriculture-Fallow	413.402	
Built up Land	18.1843	
Soil Dump	21.844	
Limestone Quarry	28.119	
Drainage / WaterBody	9.009	
WasteLand	24.7409	
Plantation	0	
Road	0	
Total	512.317	

2.10.2. Mendhi Lime Stone Mine

Land use /land cover information derived from IRS LISS-IV 2018, 2019 & 2020 (Table 4). Area statistic of each land use /land cover category were generated in GIS software and has been determined to analyze change in their spatial distribution. By comparing the land use/land cover maps, a change detection map has been generated in smart GIS software to assess the major changes in the Mines area of *Mendhi Lime Stone Mine* (117 Ha).

Table - 3 Mendhi Lime Stone Mine (117 Ha.)(Fig.3)		
Description 2020 (Area In Ha)		
Crop Land	3.7463	
Agriculture-Fallow	101.88	
Built up Land	9.1168	
Soil Dump	0.3761	
Limestone Quarry	5.9157	
Wasteland	1.536	
Plantation	1.5347	
Road	0	
Total	117	

2.10.3. Hinouti & Sijhatta Lime Stone Mine

Land use /land cover information derived from IRS LISS-IV 2018, 2019 & 2020 (Table 5). Area statistic of each land use /land cover category were generated in GIS software and has been determined to analyze change in their spatial distribution. By comparing the land use/land cover maps, a change detection map has been generated in smart GIS software to assess the major changes in the Mines area of *Hinouti & Sijhatta Lime stone Mine*(772.067 & 99.416 *Ha*).

Table - 4 Hinouti & Sijhatta Lime Stone Mine (772.067 & 99.416 Ha)(Fig. 4)		
Description	2020 (Area In Ha)	
Crop Land	18.617	
Agriculture-Fallow	574.481	
Built up Land	74.568	
DumpingLand	13.262	
Limestone Quarry	120.267	
Drainage / WaterBody	55.512	
Wasteland	19.144	
Plantation	36.437	
Total	871.583	

PRISM JOHNSON LIMITED (FORMERLY PRISM CEMENT LIMITED)

2.10.4. Land Use/Land Cover Map Of Buffer Zone with 10 Sq.km.

Land use /land cover information derived from IRS LISS-IV 2018, 2019 & 2020 (Table 6). Area statistic of each land use /land cover category were generated in GIS software and has been determined to analyze change in their spatial distribution. By comparing the land use/land cover maps, a change detection map has been generated in smart GIS software to assess the major changes in the Mines area.

Table - 5 Land Use Details of Buffer Zone (Fig. 5)			
Description	2020 (Area in Ha)		
Cement plant unit II Boundary	134.3396		
Settlements	4732.44		
Agriculture Fallow	49411.6077		
Dense Forest	2529.8061		
Dumping Land	63.7381		
Lime Stone Quarry	838.0919		
Open Scrub	2443.2466		
Plantation	335.2833		
River	572.1627		
Road	80.0801		
Waste Land	46.6298		
Crop Land	229.37306		
Water Body	676.9213		
Open Mix Jungle	136.7961		
Other Quarry Land	677.6188		
Total	62598.3184		

3. Conclusion

The Present study reveals that mining and industrial activities around Prism Johnson Ltd. are the main forces responsible for land use land cover change during years from commencement of their operation. The mining has increased manifold that has resulted in change land use in terms of forest land, cultivated land and water bodies in the area.

Exploitation on natural resource in the area is going on due to the expansion of limestone mining activities, and other industrial activities. This report focuses on LU/LC changes in the Mine lease areas and buffer areas in and around to Prism Johnson Limited, Satna India, using remote sensing data and GIS technology. Our results clearly show that LU/LC changes were summarized during the period of 2020 in the Table no-6. On the other hand there is minor change in agricultural area, water spread area, and forest areas. This study clearly indicates the significant impact of environmental and its development activities on LU/LC change. This study proves that integration of GIS and remote sensing technologies is effective tool for change detection. The quantification of LU/LC changes of Prism Johnson Ltd. area is very useful for environmental management groups, policy makers and for public to better understand the surrounding.

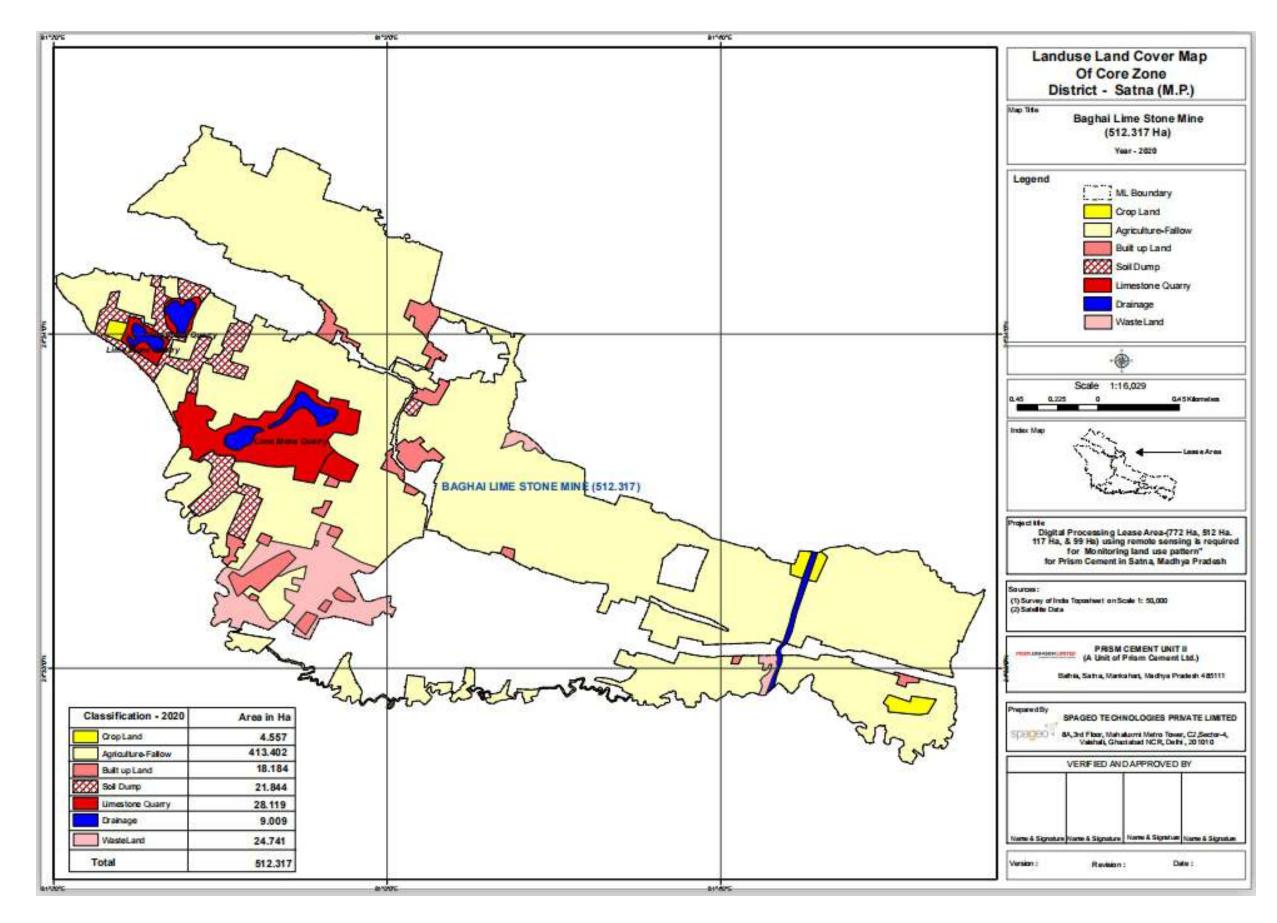


Fig:- 2 Baghai Lime stone Mine Land use Details 2020 (512.317)

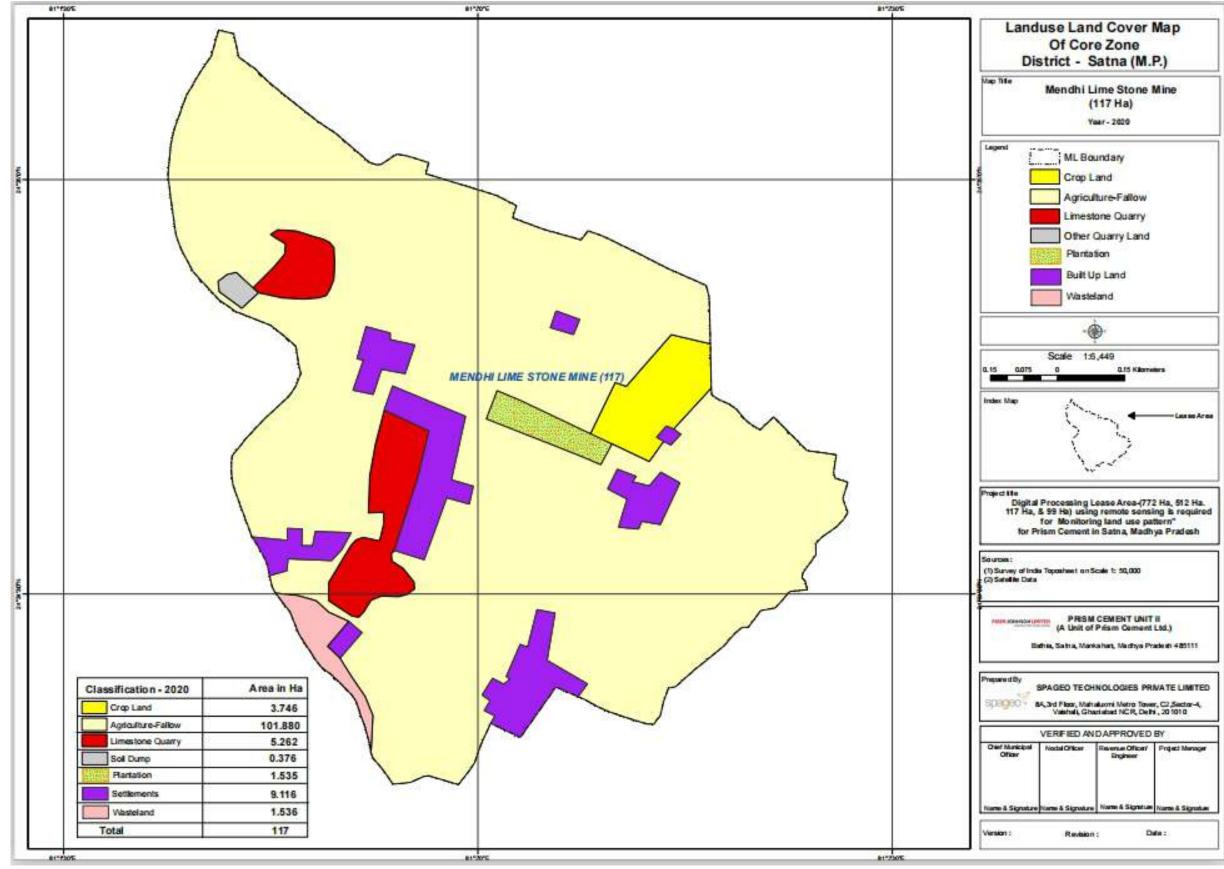


Fig:-3 Mendhi Lime stone Mine Land use Details 2020 (117 Ha.)

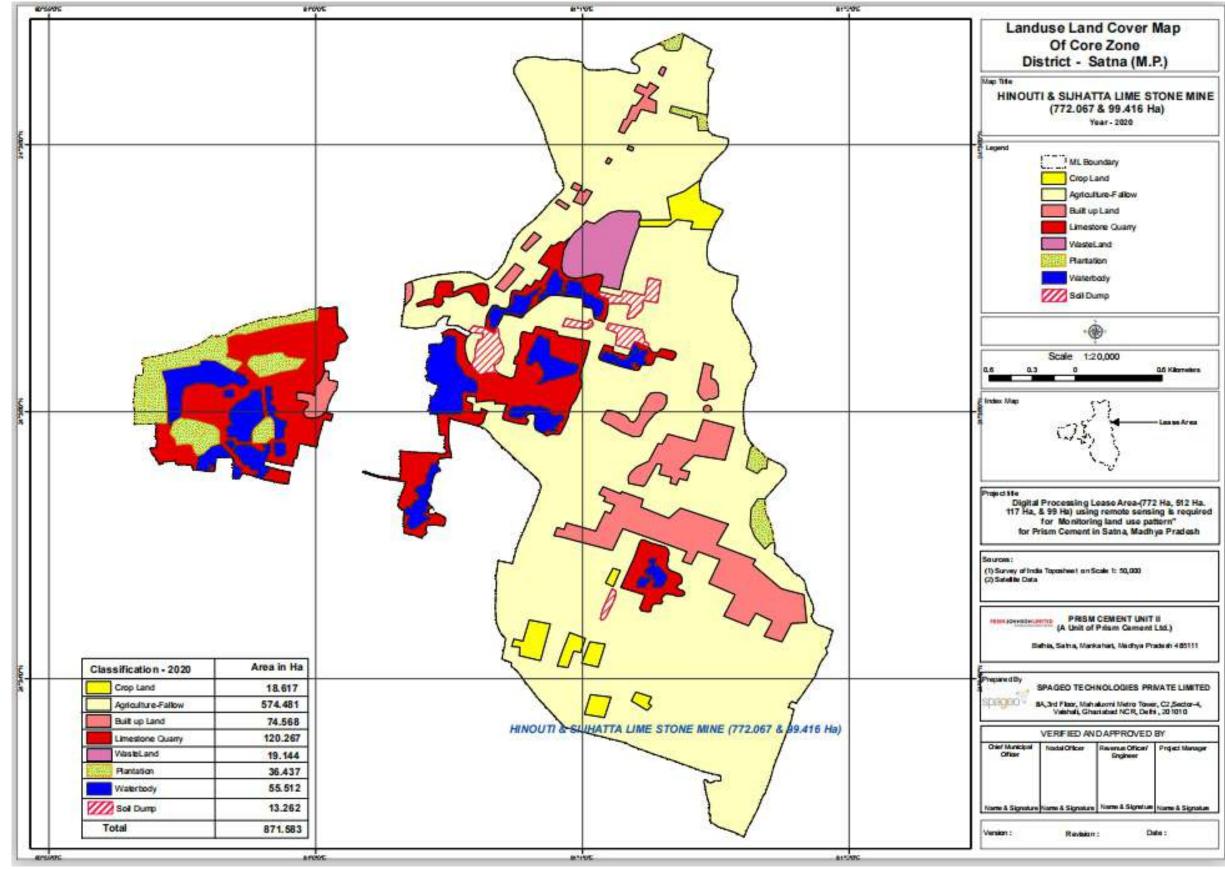


Fig:- 4 Hinouti & Sijhatta Lime stone Mine Land use Details 2020 (772.067 & 99.416)

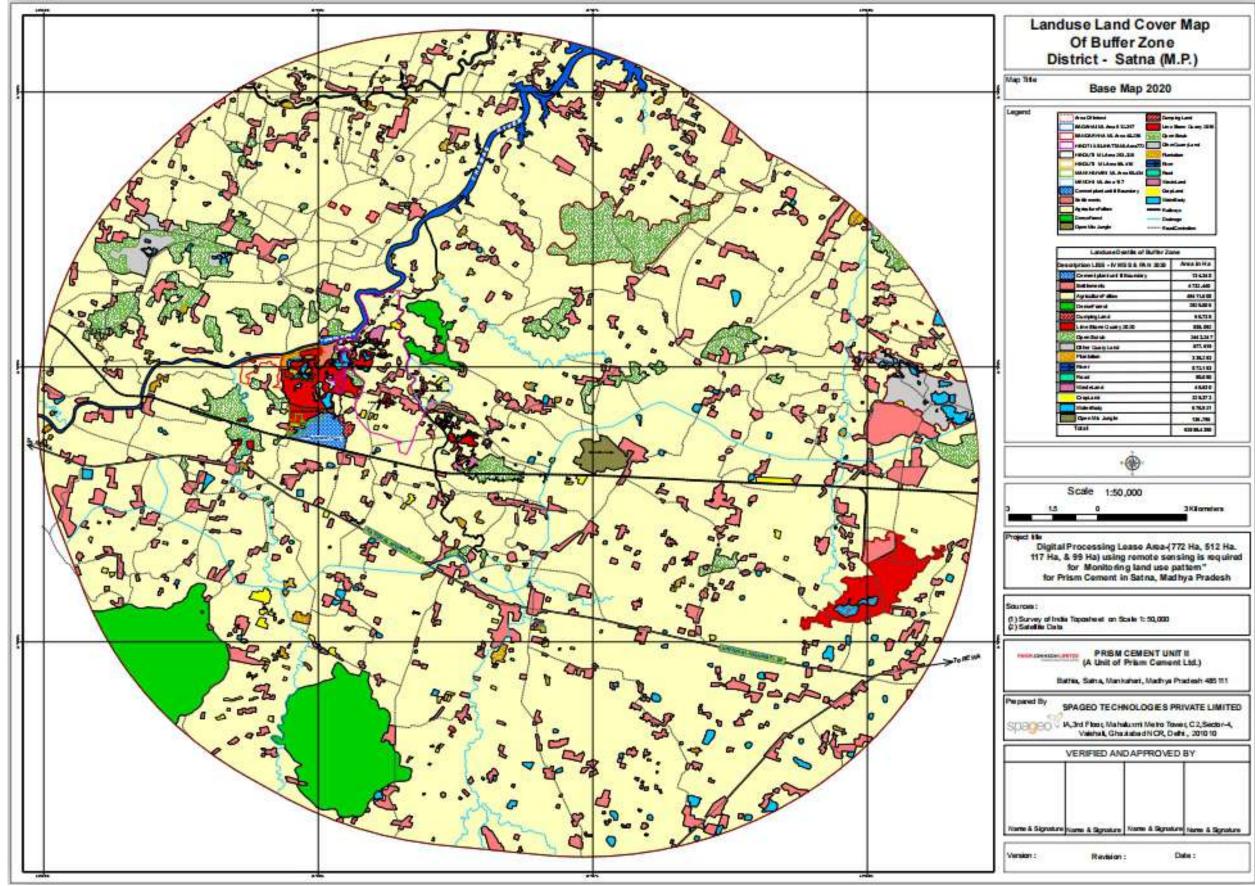


Fig: 5 Land use/Land Cover Map Of Buffer Zone-2020

ANNEXURE-019

STATUS OF COMMITMENTS MADE DURING PUBLIC HEARING HELD ON 22.05.2008

S.No.	Name of Candidate	Suggestions & Points raised	Reply of Project Proponent	Present Status
1	Mrs. Guddi devi, Chairperson "Garib Sangh Samiti" Bamhauri, Satna	a) Admission on merit and free of fee for admission	Provision for proper facilities will be considered	Admission is given to the students of surrounding villages as per availability of seats and guidelines of the company
		 b) Plantation to be done from plant gate to Mahuracch Junction 	Agreed, plantation will be done during rainy season	Plantation is being done on road side and around the Mankahari Pond
		c) Street light facility from Plant gate to Mahuracch Junction	Work will be taken up by the management as per financial position of the company	Few lamp posts have been established and will be extended in phase wise
		d) Permanent employment to effected person	Employment will be granted as per rules and regulations of company	Employment and other facilities are being provided to affected persons
2	'Sarpanch' Village Panchayat – Bathia, Satna	Employment to local villagers of Bamhauri	Employment will be granted as per rules and regulations of company	More than 50% employment has been given to local persons
3	Mithilesh – (student) Bamhauri, Satna	Appeal of Pollution Control in industry	All pollution control acts will be complied with	 All due provisions have been made to combat pollution likely to be caused. Details of APCEs are as under Raw mill/Kiln – Bag House (1) Cooler – ESP (1) Coal Mill – Bag House (1) Cement mills – Bag House (2) 92 Bag filters installed to cover all the transfer points Arrangement of water sprinkling at crusher hopper and limestone conveyor bet Water sprinkling on haul roads

				through tankers
4	Mr. Triloki Singh Baghel, Village – Bamhauri, Satna	a) Priority to employment for eligible persons	Employment will be granted as per rules and regulations of company	Employment is being given to eligible persons as per rules framed by the company
		b) Construction of Stadium in the ground of Higher Secondary School	Action will be taken	Play ground has been rehabilitated. Maintenance is done as per requirement.
		 c) Permanent water & electricity supply in school 	Adequate action will be taken	Water & Electricity supply are available at school
		d) Admission for village children to Prism Bhawan School	Admission will be granted as per rules and regulation of company	Admissions is being given to village students as per availability of seats
		e) To & fro School Bus facility to Satna for the students of villages	Provision for proper facilities will be considered	School bus service has been provided to students of villages for
		f) Distribution of sports material to Panchayat	Adequate action will be taken	commuting to Satna Study and sports materials are being distributed to village students
5	Mrs. Kalawati Singh, Bamhauri, Satna	Provision of facilities from Prism Cement for the land sellers to company	Adequate action will be taken as per rules & regulation of company	All the possible services are being provided to land losers
6	Mr. Ajit Khureshi, National Civil Human Right Association, Country Head Qtr Delhi, Camp Satna	19 point comments raised on pollution	All pollution control acts will be complied with	All due provisions have been made to combat pollution likely to be caused. • Details of APCEs are as under 1- Raw mill/ Kiln – Bag House (1) 2- Cooler – ESP (1) 3- Coal Mill – Bag House (1) 4- Cement mills – Bag House (2) 5- 90 Bag filters installed to cover

				 all the transfer points Arrangement of water sprinkling at crusher hopper and limestone conveyor bet Water sprinkling on haul roads through tankers
7	Mr. Shankar Singh, Rtd. Commissioner, (Milk & Dairy Dept), 31 Rachna Nagar, Bhopal	Employment should be provided to effected villagers	Employment will be granted as per rules and regulations of company	Employment is being provided to affected villagers. More than 50% employment has been given to local persons
8	Mr. Ramadhar Prasad, Sarpanch, Village- Hinauti, Satna	Necessary assistance & help will be extended by him for the establishment of industry with the protection of environment from Pollution	Thanks & All pollution control acts will be complied with	All the efforts are being done to control the pollution
9	Sarpanch, Village Panchayat- Mankahari, Satna	Expressed his consent to establish the industry	Thanks & Agreed	
10	Sarpanch, Village Panchayat- Sijahata, Satna	Expressed his consent to establish the industry	Thanks & Agreed	
11	Sarpanch, Village Panchayat- Sijahata, Satna	Suggested to plant 10000 saplings, seek help to improve health, sanitation facilities in villages and employment for educated persons	Agreed, Plantation will be done during rainy season, health, sanitation and employment will be considered as per rules and regulation of company	Improving green cover in and around plant premises is always company's utmost priority. Saplings are also distributed to village students to promote plantation & to make awareness. Villagers seeking medical attention have also easy access to medical centre of prism cement plant. Apart from this, free medical camps are also being regularly organised in nearby villages. Employment is also being given as

				per rules of the company
12	Mr. Diwakar Pd. Mishra Mr. Shankhadhar Mishra Panch – Village Bamhauri, Satna	Expressed his consent to establish the industry	Thanks & Agreed	
13	Mr. Sobha Nath Tiwari, Village-Bamhauri, Satna	Plantation to be done on road side & water spraying on roads	Agreed	Plantation is in continuous practice. Saplings are also distributed to villagers.
14	Mr. Tejpal Singh Parihar, & Mr. Shankhadhar Mishra, Village – Hinauti, Satna	Eradication of diseases & pollution from village Hinauti	Best efforts and assistance will be extended	Medicals camps and other awareness programmes are being organised by the company
15	Mr. Ramesh Kumar Tiwari & Sarpanch Village Mankahari, Satna	Expressed their consent to established the industry	Thanks & agreed	
16	Mr. Girija Prasad Tiwari & Others, Village Panchayat Bagahai	Improvement in tree plantation, health, education, drinking water, employment & setting up of worship places	All demands will be considered as per rules and regulations of company	Plantation is in continuous practice. Saplings are also distributed to villagers. Villagers seeking medical attention have also easy access to medical centre of prism cement plant. Apart from this, free medical camps are also being regularly organised in nearby villages. Study materials, bags, uniforms etc are being distributed to the students of nearby villages. Free drinking water is being supplied through tankers during summer season as per requirement Renovation of Jabala Baba temple, construction of Ghat and Yagya Shala has been done by the company.

Consent Order

M.P. Pollution Control Board E-5, Arera Colony Paryavaran Parisar, Bhopal - 16 MP Tele : 0755-2466191, Fax-0755-2463742

RED-LARGE

To,

CCA-Renewal VALIDITY (A/W): 30/06/2021

Outward No:100175,25/04/2020

CONSENT	NO:	***
---------	-----	-----

PCB ID: 13880

Consent No:AW-51451

The Occupier, M/s. Prism Johnson Ltd. (Cement Division Unit-II), Village-Mankahari, P.O. Bathia, Tehsil-Rampur Baghelan, Distt. Satna-485111 (M.P.).

- Subject: Grant of Renewal of Consent under section 25 of the Water (Prevention & Control of Pollution) Act,1974 & under section 21 of the Air (Prevention & Control of Pollution) Act,1981
- **Ref:** Your Application Receipt No. 956623 Dt. 11/01/2020 and last communication received on Dt.25/02/2020.

With reference to your above application, the renewal of consent has been considered under the aforesaid Acts and existing rules therein. The M. P. Pollution Control Board agreed to grant renewal of consent up to 30/06/2021, subject to the fulfillment of the terms & conditions incorporated in consent to operate for expansion issued vide order outward no. 55415 dt. 24.07.2017, CCA- Amendment outward no. 87440 dt. 22/10/2018, CCA-Amendment for use of Petcoke vide outward no. 87549 dt.15/11/2018, its subsequent renewal orders & as enclosed with this letter.

SUBJECT TO THE FOLLOWING CONDITIONS :-

a. Location:

Village-Mankahari, P.O. Bathia, Tehsil-Rampur Baghelan, Distt. Satna-485111 (M.P.).

b. The capital investment in lakhs: Rs. 112652

c. Product & Production Capacity:

Product	CTE Qty./Year	CCA Qty./Year	Applied CCA Qty./Year
Cement	6700000.000 M.T.	6700000.000 M.T.	6700000.000 M.T.
Clinker	3000000.000 M.T.	3000000.000 M.T.	3000000.000 M.T.

Note:- For any change in above industry shall obtain fresh consent from the board.

The Validity of the consent is up to 30/06/2021 and has to be renewed before expiry of consent validity. Online application through XGN with annual license fees in this regard shall be submitted to this office 6 months before expiry of the consent. Board reserves the right to amend/cancel / revoke the above condition in part or whole as and when required.

Enclosures:-

- * Conditions under Water Act
- * Conditions under Air Act
- * General conditions

e-Signed On 25/04/2020 12:46:42 (Organic Authentication on AADHAR from UIDAI Server) TPAV # KX2Y234S21

R.S. KORI Member Secretary

CONDITIONS PERTAINING TO WATER (PREVENTION & CONTROL OF POLLUTION) ACT 1974 :-

1. The daily quantity of trade effluent generation shall not exceed 0.000 KL/day, and the daily quantity of generation shall not exceed 200.000 KL/day

2. Sewage Treatment :- The applicant shall operate sewage treatment system and maintain the same properly to achieve following standards notified vide GSR No. 1265(E) Dt. 13.10.2017:-

pH	Between	6.5 - 9.0	
Suspended Solids	Not exceed	100 mg/l.	
BOD ₃ Days 27 ⁰ C	Not exceed	30 mg/l.	
COD	Not exceed	250 mg/l.	
Oil and grease Fecal Coliform (FC) MPN/100ml	Not exceed Not exceed	10 mg/l. 1000	

Consent Order

Note: Reuse/Recycling of treated effluent shall be encouraged and in cases where part of the treated effluent is reused and recycled involving possibility of human contact, standards as specified above shall apply.

Sr.	Water Code (Quantity in Kld.)	WC: 1290.000	WWG : 200.000	Water Source
1	Cooling Water	1000.000	0.000	Mine Water
2	Domestic Purpose	290.000	200.000	Bore well

3. The sewage shall be treated up to prescribed Standards and reuse in the process, for cooling and for green belt devolvement/gardening within premises. Hence zero discharge condition shall be practiced. In no case treated effluent shall be discharged outside of industry/unit premises.

4. Water meter preferably electromagnetic/ultrasonic type with digital flow recording facilities shall be installed separately for category wise consumption of water for Industrial cooling/boiler feed, mine spray, process & domestic purposes and data shall be submitted online through XGN monthly patrak/statements. The industry/unit shall also monitor the treated wastewater flow and report the same online through monthly patrak/statements.

5. Any change in production capacity, process, raw material used etc. and for any enhancement of the above prior permission of the Board shall be obtained. All authorized discharges shall be consistent with terms and conditions of this consent. Facility expansions, production increases or process modifications which result new or increased discharges of pollutants must be reported by submission of a fresh consent application for prior permission of the Board

6. All treatment/control facilities/systems installed or used by the applicant shall be regularly maintained in good working order and operate effectively/efficiently to achieve compliance of the terms and conditions of this consent

7. Compilation of Monitoring data-

i. Samples and measurements taken to meet the monitoring requirements specified above shall be representative of the volume and nature of monitored discharge.

ii. Following promulgation of guidelines establishing test procedures for the analysis of pollutants, all sampling and analytical methods used to meet the monitoring requirements specified above shall conform to such guidelines unless otherwise specified sampling and analytical methods shall conform to the latest edition of the Indian Standard specifications and where it is not specified the guidelines as per standard methods for the examination of Water and Waste latest edition of the American Public Health Association, New York U.S.A. shall be used.

iii. The applicant shall take samples and measurement to meet the monthly requirements specified above and report online through XGN the same to the Board.

8. Recording of Monitoring Activities & Results-

i. The applicant shall make and maintain online records of all information resulting from monitoring activities by this Consent.

ii. The applicant shall record for each measurement of samples taken pursuant to the requirements of this Consent as follows:

(i) The date, exact place and time of sampling

(ii) The dates on which analysis were performed

(iii)Who performed the analysis?

(iv)The analytical techniques or methods used and

(v)The result of all required analysis

iii. If the applicant monitors any Pollutant more frequently as is by this Consent he shell include the results of such monitoring in the calculation and reporting of values required in the discharge monitoring reports which may be prescribed by the Board. Such increased frequency shall be indicated on the Discharge Monitoring Report Form. Consent No:AW-51451

Consent Order

iv. The applicant shall retain for a minimum of 3 years all records of monitoring activities including all records of Calibration and maintenance of instrumentation and original strip chart regarding continuous monitoring instrumentation. The period of retention shall be extended during the course of any unresolved litigation regarding the discharge of pollutants by the applicant or when requested by Central or State Board or the court.

9. Reporting of Monitoring Results:-

Monitoring Information required by this Consent shall be summarized and reported by submitting a monthly Discharge Monitoring report on line to the Board.

10. Disposal of Collected Solid waste/sludge-

All hazardous waste/sludge shall be disposed of as per the Authorization issued under Hazardous & other waste (M&TM) Rules 2016. And/other Solids Sludges, dirt, silt or other pollutant separated from or resulting from treatment shall be disposed of in such a manner as to prevent any pollutant from such materials from entering any such water Any live fish, Shall fish or other animal collected or trapped as a result of intake water screening or treatment may be returned to eaters body habitat.

11. Provision for Electric Power Failure-

The applicant shall assure to the consent issuing authority that the applicant has installed or provided for an alternative electric power source sufficient to operate all facilities utilized by the applicant to maintain compliance with the terms and conditions of the Consent.

12. Prohibition of Bypass system of treatment facilities-

The diversion or by-pass of any discharge from facilities utilized by the applicant to maintain compliance with the terms and conditions of this Consent in prohibited except:

i. where unavoidable to prevent loss of life or severe property damage, or

ii. Where excessive storm drainage or run off would damage any facilities necessary for compliance with the terms and conditions of this Consent. The applicant shall immediately notify the consent issuing authorities in writing of each such diversion or by-pass in accordance with the procedure specified above for reporting non-compliance.

13. Industry management shall submit the information online through XGN in reference to compliance of consent conditions.

Additional Water condition:

Storm water shall not be allowed to mix with effluent, treated sewage or floor washing. Storm water shall be channelized through separate drain(S) as per natural gradient passing through lined pits each having holding capacity of 10 minutes (Hourly average) of rain fall for its catchment area.

CONDITIONS PERTAINING TO AIR (PREVENTION & CONTROL OF POLLUTION) ACT 1981 :-

1. The applicant shall operate air pollution control system and maintain continuously so as to achieve the level of pollutants to the following standards:-

Name of section	Stack height	Fuel		$\mathbf{P.M, SO}_{\mathbf{X}}, \mathbf{NO}_{\mathbf{X}}$
	(mtrs.)			(mg/Nm3)
Cement Mill – 2 nos.	49		Bag Filter,	30,NA,NA
Coal Mill	65		Bag Filter,	30,NA,NA
Cooler Exit	50		E.S.P,	30,NA,NA
Raw Mill Kiln	110	Coal & Petcoke	Bag Filter,	30,100,800

2. Ambient air quality at the boundary of the industry/unit premises shall be monitored and reported to the Board regularly on quarterly basis: The Ambient air quality norms are prescribed in MoEF gazette notification no. GSR/826(E), dated: 16/11/09. Some of the parameters are as follows:

- a. Particulate Matter (less than 10 micron) 100 µg/m³ (PM10 µg/m³ 24 hrs. basis)
- b. Particulate Matter (less than 2.5 micron) 60 µg/m³ (PM2.5 µg/m³ 24 hrs. basis)
- c. Sulphur Dioxide [SO2] (24 hrs. Basis) 80 µg/m³
- d. Nitrogen Oxides [NOx] (24 hrs. Basis) 80 µg/m³
- e. Carbon Monoxide [CO] (8 hrs. Basis) 2000 µg/m³

Consent Order

3. The industry shall take adequate measures for control of noise level generated from industrial activities within the premises less than 75 dB(A) during day time and 70 dB(A) during night time.

4. Industry shall provide with each stack port hole with safe platform of 1 meter width with support & spiral ladder/ Stepped ladder with hand rail up to monitoring platform as per specifications given in part-III emission regulation of CPCB. In no case monkey ladder shall be allowed as stack monitoring facility.

5. The industry shall make the necessary arrangements for control of the fugitive emission from any source of emission/section/activities.

6. All other fugitive emission sources such as leakages, seepages, spillages etc shall be ensured to be plugged or sealed or made airtight to avoid the public nuisance.

7. The industry shall ensure all necessary arrangements for control of odour nuisance from the industrial activities or process within premises

8. All the internal roads shall be made pucca to control the fugitive emissions of particulate matter generated due to transportation and internal movements. Good housekeeping practices shall be adopted to avoid leakages, seepages, spillages etc.

9. Industry shall take effective steps for extensive tree plantation of the local tree species within or around the industry/unit premises for general improvement of environmental.

10. Reporting of Monitoring Results:-

Monitoring Information required by this Consent shall be summarized and reported by submitting a monthly emission Monitoring report on line to the Board.

Additional Air condition:

 The continuous online monitoring system with all emission sources shall be connected with Environment Surveillance Centre, M.P. Pollution control board Bhopal with online remote calibration facility for real time remote surveillance.
 The industry shall provide pneumatic system for the handling & shall comply with the monitoring protocol as decided by the CPCB for the use of AFR. The industry is permitted to use of Biomass –120 MT, Carbon Black –18000 MT, Polythene waste/Plastic waste/ Pouches etc. –60 MT & Rice Husk –15000 MT per annum as AFR and chemical Gypsum – 75000MT, chemical waste gypsum- 36000 MT per annum as raw material.

3. The industry is permitted to use Pet-coke -210000 MT/Annum as feed stock or in the manufacturing process.

4. The industry shall furnish the online monthly patrak through XGN separately for indigenous /imported pet coke showing the balance quantity at the start of month, quantity procured during the month, the quantity consumed during the month as feedstock or in the manufacturing Process and the balance quantity in the end of the month.

7.Sufficient Arrangements shall be made for the covered storage of Coal/ Pet coke, laterite/bauxite/Red Ochre, Fly ash, Gypsum, Clinkers and AFR. In no case these raw materials shall be stored in open.

Consent Order

GENERAL CONDITIONS:

1. The non hazardous solid waste arresting in the industry/unit/unit premises sweeping, etc. be disposed off scientifically so as not to cause any nuisance/pollution.

2. The applicant shall allow the staff of Madhya Pradesh Pollution Control Board and/or their authorized representative, upon the representation of credentials:

a. To inspect raw material stock, manufacturing processes, reactors, premises etc to perform the functions of the Board.

b. To enter upon the applicant's premises where an effluent source is located or in which any records are required to be kept under the terms and conditions of this Consent.

c. To have access at reasonable times to any records required to be kept under the terms and conditions of this Consent.

- d. To inspect at reasonable times any monitoring equipment or monitoring method required in this Consent: or,
- e. To sample at reasonable times any discharge or pollutants.

3. This consent is transferable, in case of change of ownership/management and addresses of new Owner/partner/Directors/proprietor should immediately apply for the same.

4. The issuance of this Consent does not convey any property rights in either real or personal property or any exclusive privileges, nor does it authorise any invasion of personal rights, nor any infringement of Central, State or local laws or regulations.

5. Industry shall install separate electric metering arrangement for running of pollution control devices and this arrangement shall be made in such fashion that any non functioning of pollution control devices shall immediately stop electric supply to the production and shall remain tripped till such time unless the pollution control device/devices are made functional. The record of electricity consumption for running of pollution control equipment shall be maintained and submitted to the Board every month

6. This consent is granted in respect of Water pollution control Act 1974 & Air Pollution Control act, 1981 and does not relate to any other Department/Agencies. License required from other Department/Agencies have to be obtained by the unit separately and have to comply separately as per there Act / Rules.

7. Balance consent fee, if any shall be recoverable by the Board even at a later date.

8. The applicant shall submit such information, forms and fees as required by the board not letter than 180 day prior to the date of expiration of this consent.

9. The industry shall establish a separate environmental cell, headed by senior officer of the unit for reporting the environmental compliances. The industry/ Unit shall submit environmental statement for the previous year ending 31st March on or before 30th September every year to the Board.

10. Industry shall obtain membership of Emergency Response Center of the Board if needed.

11. Knowingly making any false statement for obtaining consent or compliance of consent conditions shall result in the imposition of criminal penalties as provided under the Water Act or the Air Act.

12. After notice and opportunity for the hearing, this consent may be modified, suspended or revoked by the Board in whole or in part during its term for cause including, but not limited to, the following:

- (a) Violation of any terms and conditions of this Consent.
- (b) Obtaining this Consent by misrepresentation of failure to disclose fully all relevant facts.
- (c) A change in any condition that requires temporary or permanent reduction or elimination of the authorized discharge.

13. On violation of any of the above-mentioned conditions the consent granted will automatically be taken as canceled and necessary action will be initiated against the industry.

Additional condition:

- 1. The industry shall operate the Outdoor HD Industrial grade IP (Internet Protocol) Cameras with pan-Tilt-Zoom (PTZ) feature, minimum focal length 30X with night vision facility and temper proof mechanism at suitable location to display all emission sources and effluent discharge point shall be kept operational & in working order and connect the same with Environment Surveillance Centre of MP Pollution control board Bhopal for remote surveillance.
- 2. The authorization under Hazardous & Other wastes (Management &Transboundary Movement) Rules 2016 will expire on dt. 31.12.2020 & it shall be kept valid. Timely application shall be submitted for the renewal of the same.

Consent No:AW-51451

Consent Order

3. Time bound action plan shall be submitted by the industry for ensure improvement in housekeeping by regular movement of sweeping machine. A logbook shall be maintained for the same and arrangement shall also be made for collection of solid waste scattered in the plant premises

4. Industry shall ensure regular operation and maintenance of canyons water foggers installed in the plant. They must be kept in working condition at all times.

Consent as required under the Water (Prevention & Control of Pollution) Act, 1974 & The Air (Prevention & Control of Pollution) Act, 1981 is granted to your industry subject to fulfillment of all the conditions mentioned above. For renewal purpose you shall have to make an application to this Board through XGN at least Six months before the date of expiry of this consent. The applicant without valid consent (for operation) of the Board shall not bring in to use any outlet for the discharge of effluent and gaseous emission.

e-Signed On 25/04/2020 12:46:42 (Organic Authentication on AADHAR from UIDAI Server) TPAV # KX2Y234S21

R.S. KORI Member Secretary

Consent No:AW-51451

FORMAT NO. ECO/QS/FORMAT/07

TEST REPORT NO:ECO LAB/WW/1243/11/20 TEST REPORT ISSUE DATE: 25.11.2020

TEST REPORT OF WASTE WATER*

Name of the Company: M/s. Prism Johnson Ltd.Address of the Company: Village Mankahari, Tehsil Rampur BaghelanDistt Satna (MP)				
	Distt.Satna (M.P.)		
Sampling Method	: APHA/ IS: 3025	5		
Sample Collected by	ple Collected by : Mr.Maan Singh			
Sample Quantity : As per requirement.				
Date of Sampling	: 12.11.2020			
Date of Receiving	8			
Date of Analysis	: 15.11.2020 to 25.11.2020			
Source of Sample	: Mine Workshop after separate Treated Water			
Sample ID Code	: ELW-12579	_		

Sl. No.	TESTS	PROTOCOL	RESULT	Limits of Detection	G.S.R 1265 (E)
1	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.45	2-12	6.5-9.0
2	Total Suspended Solid as TSS (mg/l)	APHA, 23 rd Ed. 2017, 2540-D	22.0	5.0-1000	<100.0
3	Oil & Grease as O & G (mg/l)	APHA, 23 rd Ed. 2017, 5520 A+B+D	BDL	5.0-600	-
4	Biochemical Oxygen Demand as BOD (mg/l) 3days at 27 ⁰ C	APHA, 23 rd Ed. 2017, 5210 A+B	8.0	5-10000	30.0
5	Chemical Oxygen Demand as COD (mg/l)	APHA, 23 rd Ed. 2017, 5220 A+C	54.0	5-50000	-
6.	Fecal Coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017,9221 A + E	Absent	-	<1000

*The result are related only to item tested. BDL = Below Detection Limit

101× Analyst

Г

Authorized Signatory

Ecomen Laboratories Pvt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aligan, Lucknow-226024 Ph.2746282 Fax-2745726

...

(26690

Opision (

FORM "O"

[See Rule 29 - F (2) and 29 - L] Report of medical examination under rule 29-B. (To be issued in triplicate)**

Certificate No.

(a) is medically fit for any employment in mines.

(the formatter the suffering from the suffering fro

- (i) any employment in mines
- (ii) any employment below ground; or
- (iii) any employment or work.....

Place PC-mines mankaham Date 22/10/20

THOUSE Conederity Signatur संहिकल सेन्टर য়িতন আঁলমন লিনিটেউ (शीबेक्ट दीगीजल) सजव्हरी, संतवा (मठप्रठ)

Name and Designation Block Letters

* Delete whatever not applicable.

** One copy of the certificate shall be handed over to the person concerned and another copy shall be sent to the manager of the mine concerned by registered post; and third copy shall be retained by the examining authority.

REPORT OF THE EXAMINING AUTHORITY

n for every medical examination whether initial or periodical or refier cure/control of disability).

.....as a result of medical examination on rtificate No. rk Cutmane a Left Thumb Left thumb impression of didate Good/Fair/Poor development. Visual acuity -Distant vision (with or without glasses) Right eye Mon Left eye ... All any organic disease of eyes 180 night blindness Colour blindness Squint *to be tested in special cases) ny organic disease tory system : leasurement · full inspiration9.........Cms. ory system : ressure en : iess ; system

FORM "O"

[See Rule 29 - F (2) and 29 - L] Report of medical examination under rule 29-B. (To be issued in triplicate)**

Certificate No.

mine, Form A.No. 102 has been examined for an initial/periodical* of the examining authority are given in the attached sheet. It is considered that Shri

Shrimati. U.m. Shrimati.

(a) is medically fit for any employment in mines.

 $\mathfrak{b}^{*(b)}$ is suffering from.....and is medically unfit for

(i) any employment in mines

(ii) any employment below ground; or

(iii) any employment or work.....

is suffering fromand should get this disability* KDc) cured/controlled and should be again examined within a period ofmonths. *He/she will appear for re-examination with the result of test of*and the specialist fromHe/She* may be opinion of permitted/not permitted* to carry on his duties during this period.

Date minesmarkallen 22/10/20

Sign tur Name and Destrongtion (Block Letters

Delete whatever not applicable.

** One copy of the certificate shall be handed over to the person concerned and another copy shall be sent to the manager of the mine concerned by registered post; and third copy shall be retained by the examining authority.

REPORT OF THE EXAMINING AUTHORITY

(To be filled in for every medical examination whether initial or periodical or reexamination or after cure/control of disability).

Annexure to certificate No.as a result of medical examination on

Identification mark. Cut mone on 1. Thum &

	Left thumb impression of the condidate
	Left thumb impression of the candidate General development.
1.	
2.	Height
3.	WeightKg.
4.	Eyes: (i) Visual acuity -Distant vision (with or without glasses)
	(i) Visual acuity -Distant vision (with or without glasses) Right eye
	(ii) any organic disease of eyes
	*(iii) night blindness
	*(iv) Colour blindness
	*(v) Squint
	(*to be tested in special cases)
5.	Ears :
	(i) Hearing right ear Man. Left ear Men.
	(ii) any organic disease
6.	Respiratory system :
	Chest measurement
	(i) after full inspiration G.g. Cms.
	(i) after full inspiration
7.	
	Blood pressure 1267A6 WWW
	Circulatory system : Blood pressure Pulse Abdomen : Tenderness
8.	Abdomen :
	Tenderness M
	Tenderness Liver Wan Spleen Aan
	Spleen Nan
0	Tumour US
9.	Nervous system
	History of fits or epilepsy No Paralysis
	Mental Health
10.	Na
11.	Skin NOw
12.	Locomotor system Skin Hernia Hydrocele
13.	Hydrocele
14.	Any other abnormality . 1: a Ma
15.	Urine: Reaction Appell Albumin All Sugar App
16.	Skiagram of chest
17.	Any other "c" test considered necessary by the examining authorit

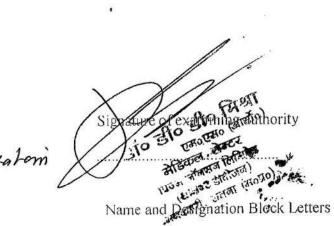
FORM "O"

[See Rule 29 - F (2) and 29 - L] Report of medical examination under rule 29-B. (To be issued in triplicate)**

Certificate No.

Certified that Shri/Shrimati* employed as $\mu e/\rho examined for an initial/periodical* medical examination. He/she appears to be <math>\mu e/\rho examined for an initial/periodical* given in the attached sheet. It is considered that Shri /Shrimati....$

(a) is medically fit for any employment in mines.


(b) is suffering from.....and is medically unfit for

(i) any employment in mines

(ii) any employment below ground; or

(iii) any employment or work.....

Place pcc miny monkatom Date 22/10/20

* Delete whatever not applicable.

** One copy of the certificate shall be handed over to the person concerned and another copy shall be sent to the manager of the mine concerned by registered post; and third copy shall be retained by the examining authority.

REPORT OF THE EXAMINING AUTHORITY

A. . . .

\$

.

(To be filled in for every medical examination whether initial or periodical or reexamination or after cure/control of disability).

Annexure to certificate No.as a result of medical examination on

Identif	ication mark. C.U.t. marcan L. Thumb
	Left thumb impression of the candidate
1.	General development. Good/Fair/Poor
2.	Heightf. b. bCms.
3.	WeightKg.
4.	Eyes :
	(i) Visual acuity -Distant vision (with or without glasses)
	Right eye Non Left eye / Mon
	(ii) any organia disease of aver
	*(iii) night blindness
	*(iv) Colour blindness
	*(v) Squint
	(*to be tested in special cases)
5.	Ears :
	(i) Hearing right ear
	(ii) any organic disease
6.	Respiratory system :
	Chest measurement
	(i) after full inspiration
	(ii) after full expiration
7.	Circulatory system :
	Blood pressure 126 mm
	Pulse
8.	Abdomen :
	Tenderness Ab
	Liver Now Spleen Now Tumour No
	Spleen Nay
	Tumour
9.	i to rous system
	History of fits or epilepsy
	Paralysis
• •	Mental Health
10.	Locomotor system Norg Skin Hernia Norg
11.	Skin
12.	
13.	Hydrocele NO
14.	Any other abnormality Urine : Reaction Skiagram of chest Any other "c" test considered necessary by the examining aution is and
15.	Sugar Albumin Nul Sugar Albumin
16. 17.	Any other "all test sensidered encourses had
17.	Any other considered necessary by the examinance authority and

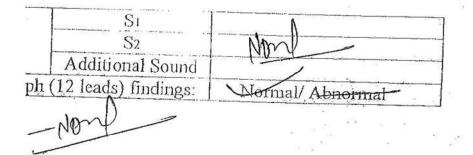
vi off Medical Examination nuder Mines Rule 29B (1), we used in continuation with Form ())

ale Nu

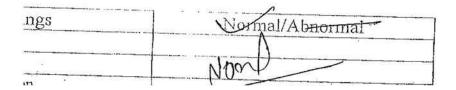
unusheimy

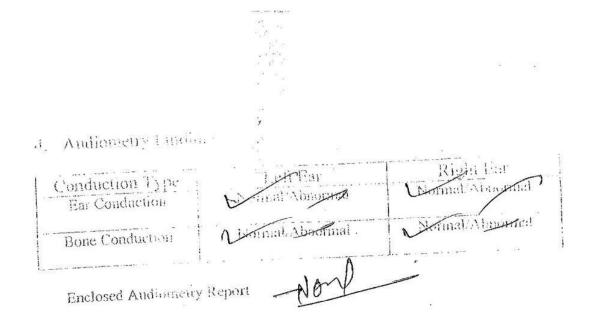
ation Marks: CUA Mark LA THUM

Function Test (Spirometry)


ity]	Predicted	Value	Performed V	Value / %	of Predicted
ity 1	Noon		Jon .	, N	1
	how	A	No. 1 Att	och the	-
	Non	L.	Report		
			/	e e e e e e e e e e e e e e e e e e e	11 (m.) an <u>anana an</u>
	٨		Annual and a second state of the second state	- I	

dical Examination as per the recommendations of lational Safety Conferences in Mines (To be used in continuation with Form 0)


cate No


cation Marks: CUAMONUN US -Thumb

ical Assessment

1 Assessment

5. Pathological/Microbiological Investigations:

No	Tests	Findings
	Blood- Te, De, Hb, ESR, Platelets	WNL Abnormal'
	Blood IV, 10, 12	WNL/Abronial
	Blood Sugar- Fasting & PP	1 WNL/Abnormal
5.	Lipid profile	1 W/NL/Abpormal
1	Blood Urea, Creatinine	VIII
	Urine Routine	WNL/Abnormal
5	Stool Routine	WNL/Abnormal

Enclosed Investigation Reports.

6. Special Tests for Mn exposure

Dehavioral	Disturbances	Present/ Not Present
Benavioral	Speech Defect	Present/ Not Present
Neurological	Tremor	Present/ Non Present
Disturbances	Adiadocokinesia	Present/ Not Present
	Emotional Changes	Present/ Not Present

Signatur

OÍ

क्षेत्रीजन)

Auffration Authority

1.22

7. Any other Special Test Required: (

T. Vulicostry (man. -Right Fat W Car final Abnound Conduction 1518 mal/Alumnia Bar Conduction formal Abuormal Bone Conduction Enclosed Audiometry Report 5. Pathological/Microbiological Investigations: \bigcirc Findings _ WANI Abnormal Blood- Te, De, Hb, ESR, Plaielets Tests WNL/Abronhial S.No WILL Abnormal Blood Sugar- Fasting & PP WNL/Abnormal 1. Lipid profile WNL/Abnormal Blood Urea, Creatinine 3. WNL/Abnormal 4. Urine Routine 5. Stool Routine 6. Enclosed Investigation Reports. 6. Special Tests for Mn exposure Present/ Not Present Present/ Not Present 1. Behavioral Disturbances Present/ Not Present Speech Defect Present/ Not Present Tremor Present/NotPresent Neurological Adiadocokinesia Disturbances Emotional Changes 7. Any other Special Test Required: C The advantage of the second Signatur

3

a a sourcest 2 a a

compat 3 2 3

94 78

,	III.A Dec and a set	PRISM JOHNSON LIMITED ((FORMERLY PRISM CEMENT LIMITED)) ((FORMERLY PRISM CEMENT LIMITED)) Village:-Mankahari, P.OBathia, Tehsil- Rampur Baghelan, Distt Satna, PIN-485111 (M.P.) India Phone:-07672-302600, Email:-	PRISM JOHNSON LIMITED ((FORMERLY PRISM CEMENT LIMITED)) ari, P.OBathia, Tehsil- Rampur Baghelan, Distt9 PIN-485111 (M.P.) India Phone:-07672-302600, Email:-	tt Satna,
, Ţ	Registration No.	: 66690	Lab No.	Lab No.: 19-5283
- <u>-</u>	Patient Name : N	Patient Name : Mr. UMESH SINGH	Age/Sex Male	: 40Yrs /
	Doctor: Dr. TRIBHUVAN SINGH	HUVAN SINGH	Date By: 2 12:15:13 PM	: 23-10-2020 : PM
	Test Name	Result	Unit	Normal
•	LIPID PROFILE			
8	Total Cholestrol	123.6	lb/dl	130-220
	Triglyceride	74.6	lb/gm	75-150
	H.D.L.	35.6	lb/dl	30-95
	L.D.L. SERUM CREATININE	I	mg/dl	65-135
	Serum Creatinine BLOOD SUGAR (F)	0.81	mg/dl	0.4-1.4
	Fasting Blood Glucose BLOOD UREA	86.8	mg/dl	70-110
	Bloood Urea CBC	28.7	mg/dl	10-40
	HB	14,8	G/DL	12-16
	TLC/Total Count Of WBC	/BC 6200	/CUMM of BId.	4000-11000
	DLC-NEUTROPHIL	56	%	40-75
	LYMPHOCYTE	40	%	20-45
	EOSINOPHIL	04	%	0-5
	MONOCYTE	00	%	0-6
	BASOPHIL	I	%	0-1
	E.S.R.	05	/HR.	0-10
	Platelet Count		lakh/cumm	1.5-3.5
	R.B.C./Total Count of RBC	RBC 4.49	millions./cumm	4.5-6.5
	P.C.V.	ł	9/0	33-48
	M.C.V.	I	fi	76-96
	м.с.н.	I	bd	27-32
	M.C.H.C. URINE REPORTS	*	%	31-35

· · · · ·

\$ <u>\$</u>	1. 192		"
66690 ESH SINGH UVAN SINGH	Lab No. : 19-5283 Age/Sex : 40Yrs / Male Date: 23-10-2020		
	al a Mirila da Sila da Sila da Marila da Sila d	ar. ()	
-: URINE E	EXAMINATION :-		
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Appearance :- Clear		
**** *	Reaction :- Acidic		a con
• • •	Specific Gravity : 1020		New Constant And
	Bili salt :-		
*******	Bili Pigment :-		
	Urobilinogen :-		
in and the second	Other :-	12.7	

DJAGNOSTIC REPORT

CLIENT CODE: C000084392 CLIENT'S NAME AND ADDRESS : UMESH SINGH PCL 503924

Test Report Status Final	Results	Biological Reference Interval Units
REFERRING DOCTOR : SELF		CLIENT PATIENT ID :
DRAWN: 27/09/2020 16:19	RECEIVED : 27/09/2020 16:21	REPORTED : 02/10/2020 15:38
ACCESSION NO : 0002SI072240	AGE: 44 Years SEX: Male	DATE OF BIRTH :
PATIENT NAME : UMESH SINGH	PCL 503924	PATIENT ID : UMESM2709752
UMESH SINGH PCL 503924	PRIM ESTA Mum MAH Tel : CIN	LIMITED IE SQUARE BUILDING,PLOT NO 1,GAIWADI INDUSTRIAL ATE,S.V. ROAD,GOREGAON (W) Ibal, 400062 ARASHTRA, INDIA 1-800-222-000, - U74899PB1995PLC045956 II : connect@srl.in

PRISM JOHNSON- ONSITE PACKAGE

LUNG FUNCTION TEST

LUNG FUNCTION TEST AUDIOMETRY BASIC

AUDIOMETRY

BASIC EYE EXAMINATION

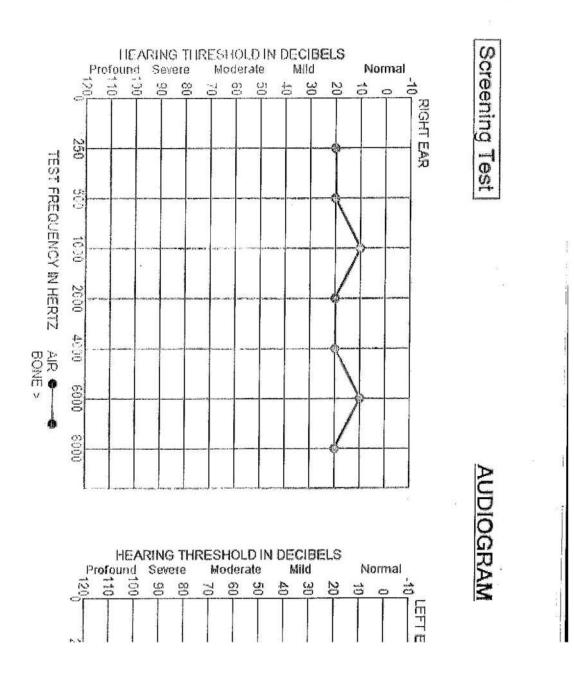
DISTANT VISION RIGHT EYE WITHOUT GLASSES DISTANT VISION LEFT EYE WITHOUT GLASSES NEAR VISION RIGHT EYE WITHOUT GLASSES NEAR VISION LEFT EYE WITHOUT GLASSES COLOUR VISION ECG

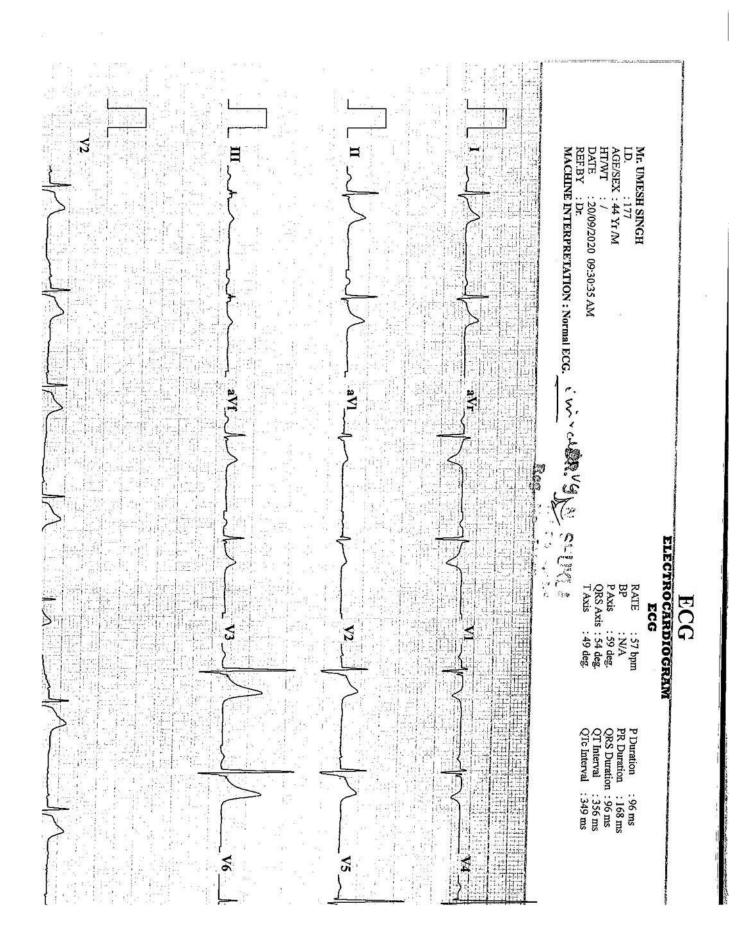
ECG

HEARING WITHIN NORMAL LIMITS

WITHIN NORMAL LIMITS

WITHIN NORMAL LIMIT (6/6) WITHIN NORMAL LIMIT (6/6) **REDUCE VISUAL ACUITY (N12) REDUCE VISUAL ACUITY (N12)** NORMAL(17/17)


WITHIN NORMAL LIMITS


End Of Report

Please visit www.srlworld.com for related Test Information for this accession

4. Al

Dr. J N Shukla ,MBBS, AFIH **Consultant Physician**

PULMONARY FUNCTION TEST PFT

•

Information				34			984) XA
: UMESH SINGH		DATE :	20-09-	20 09:03	:30		
: 44 /M ID : 1 : Dr. ion:		Height : Weight : Smoker :	60	oker			
M	SVC	Pre Povt $-$ L 3^- U 2^+ E 1^+				-	MVV
		N O	1 2 3				
6 9 12 15 18 21 24 ime In Sec ->	27 30 33 36	$ \begin{array}{c} -1 \\ -1 \\ I \\ -2 \\ T \\ -3 \\ R \\ R \\ -4 \\ \end{array} $		n Sec ->			
	Parameter	Pred	Pre	%Pred	Post	%Pred	Dif.%
FVC max 25% PEF Pred.	FVC (L) FEV0.5 (L) FEV1 (L) FEV1/FVC % PEF (L/S)	3.67 3.03 82.70 8.45	3.54 1.72 2.82 79.73 5.19	96.53 93.07 96.41 61.37	- 1990 I		<u></u>
• Vmax 50% • Vmax 75% + + + + + + + + + + + + + + + + + + +	PIF (L/S) FEF25-75%(L/ VMax25 % VMax75 % FET100 % SVC (L) ERV (L) IRV (L) Rf (BrPM) VT (L) TI (s) TE(s) VE (I/M) VT/TI(L/S) TI/T.TOT IC MVV FEF50 %(L/S) FIF50 %(L/S) FEF50/FIF50	<pre>/s) 4.03 7.32 4.58 1.85 3.82 1.15 111.32</pre>	2.48 4.39 2.79 1.99 1.76 2.15 0.30 0.72 62.72 1.15 0.34 0.61 63.38 3.35 0.36 1.87 2.79 88.56 0.03	61.65 59.97 61.01 107.90 56.40 26.36		÷	т.— чоловор телен 2
							2

	0	1 2 1 1
	Sinsh Father NAME Kam	
	The MP COD 57.39.24	
	OR NAMEPCL4	
	CHEST X RAY PA VIEW FINDINGS	
1>TRACHEAL SHADOW	Normal	
2>LUNG FIELD	Normal	
3>HILAR SHADOW	Normal	
4>BOTH C P ANGLE	Normal	8
5>CARDIAC SHADOW	Normal	
6>VISUALIZED BONE RIB CAGE	Normal	
7> <u>IMPRESSION</u>	NAD	8 SIGNATURE RADIOLOGI Rego Dial INI. REGO NO TAP2162 CREED NO TAP2162
	NAME	& SIGNATURE RADIOLOGI

-

PRISM JOHNSON LIMITED CSR ACTIVITIES EXPENSE SUMMARY FY 2020-21 (01.04.2020 to 31.03.2021)

(1)	(2)	(3)	(4)	(5)		(6)	
				Location of the project.		Amount	
SI. No	Name of the Project	Item from the list of activities in schedule VII to the Act.	list of al activities in are schedule VII a to the Act. (Ye s/	are a (Ye	State.	District.	spent on the projects or programs (Rs. In Lacs)
А.	INFRASTRUCTURE DEVELOPMENT (Rural Infrastructure Development Schedule VII (X))						
1	Construction of WBM road at Adivasi Basti Chulhi villages (1.6 KM)		Yes	Madhya Pradesh	Satna	5.59	
2	WBM road Construction Kulhadi (3 KM)	Rural Infrastructure Development	Yes	Madhya Pradesh	Satna	10.77	
3	Construction of concrete wall for protection of River Bank along stair case near Jabla Baba Hinauti	Schedule VII (X)	Yes	Madhya Pradesh	Satna	8.00	
4	Construction of bus shelter at Majhiyar		Yes	Madhya Pradesh	Satna	3.21	

5	Construction of bus shelter at Chormari		Yes	Madhya Pradesh	Satna	2.82
6	Renovation of Community Centre at Nagod		Yes	Madhya Pradesh	Satna	4.16
7	Renovation of Community Centre at Majhgawan with providing of chairs		Yes	Madhya Pradesh	Satna	10.36
	SUB TOTAL					44.91
в.	HEALTH & HYGIENE (Health & Hygiene Schedule VII (i))					
1	Free consultation & medicines distribution from PCL Medical centre Out door patient to nearby villagers (Attended 12530 Patients)	Health & Hygiene Schedule VII (i)	Yes	Madhya Pradesh	Satna	3.77
2	Organisation eye Camp for cataract patients from nearby villages (20 Nos.)	Health & Hygiene Schedule VII (i)	Yes	Madhya Pradesh	Satna	1.90
3	24 hrs. ambulance facility will be provided to nearby villagers free of cost. (Attended 690 Patients)	Health & Hygiene Schedule VII (i)	Yes	Madhya Pradesh	Satna	5.50
4	Construction of ODF Toilets at Village Majhiyar (10 no's)	Health &	Yes	Madhya Pradesh	Satna	2.19
5	Construction of ODF Toilets at Village Malgaon (10 no's)	Hygiene Schedule VII (i)	Yes	Madhya Pradesh	Satna	2.06
6	Construction of ODF Toilets at Village Narsinghpur (10 no's)		Yes	Madhya	Satna	2.25

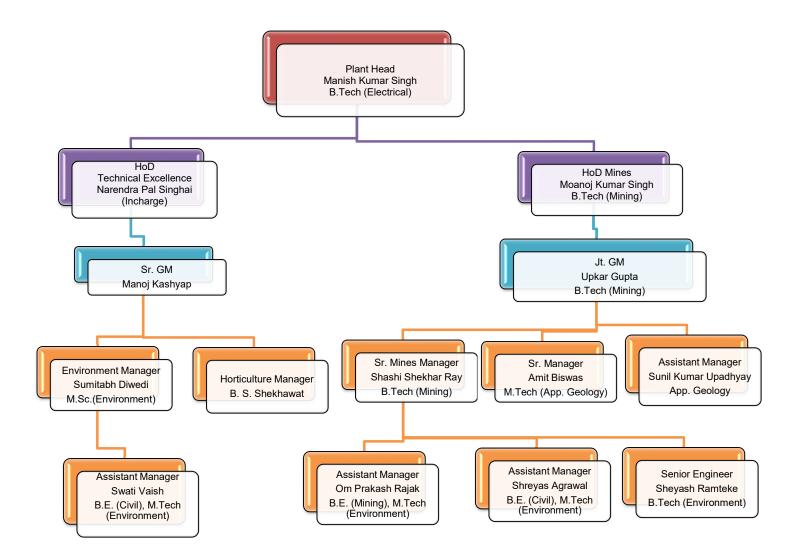
				Pradesh		
7	Construction of ODF Toilets at Village Katra Narsinghpur (10 no's)		Yes	Madhya Pradesh	Satna	2.32
8	Operation & Maintenance of Sulabh Complex at Mahurachh Turning (12 months)	Health & Hygiene Schedule VII (i)	Yes	Madhya Pradesh	Satna	5.42
9	Financial assistance to Mr. Ambar Tiwari Cancer Patient, for treatment	Health & Hygiene Schedule VII (i)	Yes	Madhya Pradesh	Satna	1.00
10	Financial Assistance to Mr. Ramgopal Prajapati for cancer treatment	Health & Hygiene Schedule VII (i)	Yes	Madhya Pradesh	Satna	0.50
11	Financial Assistance to Mr. Rajeev Jain, Kidney patient from Ashoknagar on 24.11.2020	Health & Hygiene Schedule VII (i)	Yes	Madhya Pradesh	Satna	1.00
12	Providing nutritional food to 133 Children at Rampur Baghelan Block in association with Women & Child Development Program	Eradicating Malnutrition Schedule VII (i)	Yes	Madhya Pradesh	Satna	0.67
13	Repairing and white wash of Primary health Centre at Sijahata (2000 sqft)	Health & Hygiene Schedule VII (i)	Yes	Madhya Pradesh	Satna	1.32
14	Repairing and white Veterinary health Centre at Sijahata	Health & Hygiene Schedule VII (i)	Yes	Madhya Pradesh	Satna	0.18

15	Renovation of Ayurvedic Hospital Chormari	Health & Hygiene Schedule VII (i)	Yes	Madhya Pradesh	Satna	4.39	
	SUB TOTAL					34.47	
с.	WATER CONSERVATION & DRINKING WATER (Safe Drinking Water Schedule VII (i))						
1	Providing water Tankers for drinking purpose as required (Provided 270 tankers)		Yes	Madhya Pradesh	Satna	2.43	
2	Installation of new Hand pump with bore well at Chormari (01 Nos)	Safe Drinking	Yes	Madhya Pradesh	Satna	0.69	
3	Installation of new Hand pump with bore well Majhiyar (01 Nos)		Yes	Madhya Pradesh	Satna	0.70	
4	Installation of new Hand pump with bore well at Chulhi village (01 Nos)	Water Schedule VII (i)	Yes	Madhya Pradesh	Satna	0.69	
5	Installation of new Hand pump with bore well Baghai (01 Nos)	-	Yes	Madhya Pradesh	Satna	0.70	
6	Installation of new Hand pump with bore well Hinauta (01 Nos)		Yes	Madhya Pradesh	Satna	0.67	
7	Installation of new Hand pump with bore well Badhaura (01 Nos)		Yes	Madhya Pradesh	Satna	0.68	
	SUB TOTAL					6.56	

D.	EDUCATION (Promoting Education Schedule VII (ii))					
1	Renovation of Government Primary School Adiwasi basti Chulhi		Yes	Madhya Pradesh	Satna	4.94
2	Renovation of Government Girls Primary School Mankahari	Promoting	Yes	Madhya Pradesh	Satna	3.51
3	Renovation of Government Primary School Hinauta	Education Schedule VII (ii)	Yes	Madhya Pradesh	Satna	3.72
4	Renovation of Govt Higher Sec School Sijahata		Yes	Madhya Pradesh	Satna	7.16
5	Renovation of Govt Higher Sec School Bamhauri		Yes	Madhya Pradesh	Satna	6.88
6	Construction of 65 meter boundary wall at Government Primary School Adiwasi basti Chulhi		Yes	Madhya Pradesh	Satna	3.36
7	Providing of 60 Desk table to Government College Rampur Baghelan	Promoting Education Schedule VII (ii)	Yes	Madhya Pradesh	Satna	2.25
8	Slogan painting for awareness on different themes at near by villages (Total 200 Nos.)	Promoting Education Schedule VII (ii)	Yes	Madhya Pradesh	Satna	0.72
9	Smart class setup at Bamhauri and Sajjanpur Higher Secondary Schools (o8 classes)	Promoting Education Schedule VII (ii)	Yes	Madhya Pradesh	Satna	10.37

	SUB TOTAL					42.91
Ε.	ENVIRONMENT CONSERVATION (Environment Conservation Schedule VII (iv))					
1	Plantation with honey bee structure (100 Nos)	Environment Conservation Schedule VII (iv)	Yes	Madhya Pradesh	Satna	2.67
2	Survival & Maintenance of plantation at Sijahata & Baghai (For 73150 plants)	Environment Conservation Schedule VII (iv)	Yes	Madhya Pradesh	Satna	11.12
3	Survival & Maintenance of Satari village plantation (For 30000 plants)	Environment Conservation Schedule VII (iv)	Yes	Madhya Pradesh	Satna	8.10
4	Irrigation of plantation at nearby villages	Environment Conservation Schedule VII (iv)	Yes	Madhya Pradesh	Satna	4.25
5	Distribution of fruit plant saplings and plantation at Nearby villages (6000 Plants Between July to Oct)	Environment Conservation Schedule VII (iv)	Yes	Madhya Pradesh	Satna	1.12
6	Development and plantation of 18000 saplings at Satari village	Environment Conservation Schedule VII (iv)	Yes	Madhya Pradesh	Satna	8.24
7	De-silting of pond at Malgaon (6000 M3)	Conservation of Natural	Yes	Madhya Pradesh	Satna	4.32
8	De-silting of Sharman Dongari Jamuniya Pond (90M x 35M x 1.5M) - 4725 M3	Resources Schedule VII (iv)	Yes	Madhya Pradesh	Satna	9.13

9	Construction of Single Bore shaft structures at Malgaon		Yes	Madhya Pradesh	Satna	1.18
10	Construction of Single Bore shaft structures at Sharman Dongari Jamuniya	Water Conservation Schedule VII (iv)	Yes	Madhya Pradesh	Satna	1.66
11	Construction of double Bore shaft structures at Malgaon		Yes	Madhya Pradesh	Satna	2.14
12	Construction of Drum based Water Harvesting Structure at Badhaura (100 no's)	Water - Conservation Schedule VII (iv)	Yes	Madhya Pradesh	Satna	5.29
13	Construction of Drum based Water Harvesting Structure at Mahurachh (100 no's)		Yes	Madhya Pradesh	Satna	4.96
14	Installation of solar street lights at Baghai - 20 Nos		Yes	Madhya Pradesh	Satna	3.27
15	Installation of solar street lights at Majhiyar -20		Yes	Madhya Pradesh	Satna	3.27
16	Installation of solar street lights at Hinauti -20	Environment Conservation	Yes	Madhya Pradesh	Satna	3.27
17	Installation of solar street lights at Mankahari - 20	Schedule VII (iv)	Yes	Madhya Pradesh	Satna	3.27
18	Installation of solar street lights at Sijahata - 20 Nos		Yes	Madhya Pradesh	Satna	3.27
19	Installation of solar street lights at Malgaon - 20		Yes	Madhya	Satna	3.27


				Pradesh		
20	Installation of solar street lights at Hinauta - 10		Yes	Madhya Pradesh	Satna	1.63
21	Plantation of 70000 saplings in forest land at Khamhariya		Yes	Madhya Pradesh	Satna	53.81
22	Purchasing and providing of Garbage Collection Vehicle to Janpad Panchayat Rampur Baghelan		Yes	Madhya Pradesh	Satna	6.59
	SUB TOTAL					145.83
F.	EMPOWERMENT & SKILL DEVELOPMENT Vocational Skill Development Schedule VII (ii)					
1	Training program for driver with license making for at least 100 incumbents (02 Batch of 50 nos.)	Vocational Skill Development Schedule VII (ii)	Yes	Madhya Pradesh	Satna	2.30

3	Training program for carry bag making for 25 incumbents from nearby villages	Vocational Skill Development Schedule VII (ii)	Yes	Madhya Pradesh	Satna	2.50
4	Training program for Agarbatti making for 25 incumbents from nearby villages	Vocational Skill Development Schedule VII (ii)	Yes	Madhya Pradesh	Satna	2.50
5	Training program for Cotton wick making for 25 incumbents from nearby villages	Vocational Skill Development Schedule VII (ii)	Yes	Madhya Pradesh	Satna	1.50
6	Permanent Driving license making to 69 trainees	Vocational Skill Development Schedule VII (ii)	Yes	Madhya Pradesh	Satna	0.87
7	Setting up of marketing centre (Shop) at Satna for Self Help Group products	Livelihood Development Schedule VII (ii)	Yes	Madhya Pradesh	Satna	4.70
	SUB TOTAL					18.67

G.	PROMOTION OF SPORT ACTIVITIES (Promotion of Sports Schedule VII (vii)					
1	Construction of main gate at playground Mankahari	Promotion of Sports Schedule VII (vii)	Yes	Madhya Pradesh	Satna	4.54
2	Construction of covered Pavilion at playground Mankahari	Promotion of Sports Schedule VII (vii)	Yes	Madhya Pradesh	Satna	12.06
	SUB TOTAL					16.60
н.	SOCIAL WELFARE Social Welfare Schedule VII (iii)					
1	Facilities for senior citizens, old age homes (1 Activity)	Social Welfare Schedule VII (iii)	Yes	Madhya Pradesh	Satna	6.00
2	Provided 50 nos. dustbin to district administration Satna under Swatch Bharat Abhiyan	Support to Swatch Bharat Mission Schedule VII (i)	Yes	Madhya Pradesh	Satna	0.26
3	Distribution of thermo cot innerwear to Sr. Citizens at Satna (200 Nos.)	Social Welfare Schedule VII (iii)	Yes	Madhya Pradesh	Satna	0.51
4	Financial assistance to Amalgamated Fund	Measure for benefit of Armed forces veterans war widows and their dependents Schedule VII	Yes	Madhya Pradesh	Satna	0.51

		(vi)				
5	PCR Machine for Covid test to Gandhi Memorial Hospital Bhopal (M.P.)	Disaster Management Schedule VII (xii)	No	Madhya Pradesh	Bhopal	55.00
6	Providing of Sanitizer Hand wash to peoples at Satna (20 ltrs 50 nos)	Disaster Management Schedule VII (xii)	Yes	Madhya Pradesh	Satna	1.10
7	Financial assistance to Keshav Madhav Gau Sewa Sansthan, Bagaha, Satna for arrangement of food items in COVID-19 Lockdown	Disaster Management Schedule VII (xii)	Yes	Madhya Pradesh	Satna	0.11
8	Distribution of 200 food packets in COVID 19 lockdown in Rampur Baghelan	Disaster Management Schedule VII (xii)	Yes	Madhya Pradesh	Satna	0.97
9	Fina. Asst. to Manas Sangh Ramvan, For Corona Pandemic Management	Disaster Management Schedule VII (xii)	Yes	Madhya Pradesh	Satna	5.24

10	Fodder for Gaushala and other animal welfare activities (Mahurachh Gaushala)	Animal Welfare Schedule VII (iV)	Yes	Madhya Pradesh	Satna	4.00
	SUB TOTAL					73.70
	GRAND TOTAL					383.65

Expenditure 2020-2021(October'20-March'21)

	Unit I	Unit II
Maintenance of APCEs	49323	468975
Env Monitoring, STP Operation & Maintenance, Plantation Etc.	1006255	365953
APCE Power Consumption	30048681	63432541
Total (INR)	31104258.5	64267469.45

ANNEXURE - 25

PRISM CEMENT UMITED

Works : Vill-Asanbaitani, P.O. Jadina, Orat Stanna - 4857711 (2017) India Kd. : (07672) 275301-2, 275821-22, Fax : 175303 Corsp. Add. : 'Rajdeeg?, Revre Rocd, Sama - 4853001 (M.P.) India Fd. : (07672) 402726, Fax : 402710

Ref: PCU/ENV/2011/31/U2 Date: 11.04.2011

To, Regional Director, Ministry of Environment & Forests Regional Office, Western Region Ravishankar Nagar, Bhopal

Dear Sir.

Sub: Intimation of financial closure of the project Your Ref: 1-11011/949/2007-IA-II (I) Date 22.09.2008

With reference to above mentioned subject and letter, we would like to inform you that the date of financial closure / commercial production is 01.01.2011. A certificate in this regard is attached.

Thanking you,

Yours faithfully, For PRISM CEMENT LIMITED

Tiph-

D.K.Singh Jt. General Manager (Environment)

Enc: as above

Registered Office : 305, Laxmi Niwas Apartments, Ameerpet, Hyderabad - 500 016. Corporate Office : "Rahejas", Main Avenue, V. P. Road, Santacruz (W), Mumbai - 400 054.

मध्यप्रदेश शासन जिला व्यापार एवं उद्योग केन्द्र सतना

कमांक/जिव्यात्तके-सत/बृहद उद्योग/2011/

सतना दिनांक :--

उत्पादन प्रमाण पत्र

प्रमाणित किया जाता है कि मेसर्स प्रिज्म सीमेंट यूनिट- 2 (ए यूनिट आफ प्रिज्म सीमेंट लिंध) ग्राम मनकहरी पोव वठिया जिला-सतना (म०प्राव) को भारत सरकार उद्योग मंत्रालय से आईवई०एम० पार्ट बी जारी किया गया है जिसका नं० 3406/ आईआईएम/ पीआरओडी / 2011 न्यू देहली दिनांक 27-1-11 है । इसमें वर्णित उत्पाद का नाम वार्षिक रथापित क्षमता एवं उत्पादन दिनांक निम्नानुसार है :--

夺0	आइटम कोड	उत्पाद का नाम	स्टाल कैपिसिटी	व्यवसायिक उत्पादन दिनांक
1-	3242	आल वैसइटीज आफ पोर्टलैण्ड सीमेंट	3600000 군국	1-1-2011
2	3241	सीमेंट क्लिंकर	2300000 근커	1-1-2011

उपरोक्तानुसार एवं इकाई द्वारा प्रस्तुत किये गये अभिलेखों के आधार पर सीमेंट क्लिंकर की वार्षिक उत्पादन क्षमता 2300000 टन एवं आल वैराइटीज आफ पोर्टलैण्ड सीमेंट की वार्षिक उत्पादन क्षमता 3600000 टन के लिये, व्यवसायिक उत्पादन दिनांक 1-1-2011 首 [

-sd-महाप्रबंधक जिला व्यापार एवं उद्योग केन्द्र, सतना(म०प्र०) सतना,दिनांक :- '31|3|11

कमांक/जिव्याउके-सत/बृहद उद्योग/2011/ 65/5-प्रतिलिपि :-

मेंसर्स प्रिज्म सीमेंट यूनिट- 2 (ए यूनिट आफ प्रिज्म सीमेंट लि0) ग्राम मनकहरी पो० वठिया जिला-सतना (म०प्र०) ।

नहांप्रेवचक तिहासम्पर्भ वहारीम केन्द्र, जाता व्यापार पतं चहारीम केन्द्र, जातन (लग्रम्ब) जित्व मालम (नग्रम्ब) सालम (नग्रम्ब)

Advertisements givenin Newspapers regarding information of Public Hearing.

010169 25.05 सर्वसाधारण को यह सूचित किया जाता है कि प्रिज्म सीमेंट (यूनिटे-11) क्लिकर प्रोडक्शन 3.0MTPA; र्म्समेट प्रोडक्शन 6.7MTPA और माइन्स (वहिनौती और सिजहटा 772.067 हे., हिनौती और सिजहटा 99.416 है. मेढी 117.594 हे और जगहाई - 512.317 हे.) मुनकहरी पोस्ट-बठिया जिला सतना (म.प्र.) का पर्यावरणीय क्लियरेंस हो गया है पर्यावरणीय विलयरेंस हो. गया ह पर्यावरणीय क्लियरेंस की प्रति, म.प्र. प्रदूषण नियंत्रण बोर्ड एवं पर्यावरण एवं वन वेव साइट Lttp//entor.nic.in पर उपलब्ध है साएम०३६३० 25.09.2008 आम स्चना सर्व साधारण को यह सूचित किया जाता है कि प्रिज्म सीमेन्ट (यूनिट-॥) क्लिकर प्रोडक्शन 3.0 एम टी पी ए, सीमेन्ट प्रोडक्शन 6.7 एम टी पी ए और माइन्स (हिनौती और सिजहटा 772.067 हे., हिनीती और सिजहटा 99.416 हे., मेढी 117.594 हे. और बगहाई 512.317 हे.) मनकहरी, पोस्ट बठिया जिला सतुनी (म.प्र.) का पर्यावरणीय क्लियरेंस हो गया है। पर्यावरणीय क्लियरेंस को प्रति म.प्र. प्रदूषण नियंत्रण बोर्ड एवं पर्यावरण एवं वन मंत्रालय की बेव साइट http//:entor.nic.in पर उपलब्ध है। 1 प्रबंधक प्रिल्म सीमेन्ट लि. मनकहरी, जिला सतना म.प्र.